Abstract

Fluorescence spectra of two organic dyes doped in polymer beads as well as coated on single microparticles of silica exhibit whispering gallery modes (WGMs). For doped microspheres, theoretical simulations on WGMs have been carried out based on the Lorentz–Mie theory by varying the refractive index and the diameter of the microparticle. Similarly, for a coated microsphere, an Aden and Kerker model of the Lorentz–Mie theory has been used to simulate WGMs. For diameters 8μm, low-resolution simulations of scattering efficiency fail to show modes of higher-quality factors (Q108). A new procedure of identifying these modes is given here that does not require use of high-performance computing. Effects of WGMs on decay rates have also been studied. It has been found that, while doped microparticles exhibit no effect on the radiative rate, coated microparticles show inhibition of the decay rate for smaller sizes. Decay rates of single-coated microspheres are found to be distinctly different from those of randomly shaped single microcrystals.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Vahala, Optical Microcavities (World Scientific Publishing Co., 2004).
    [CrossRef]
  2. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific Publishing Co., 1996).
    [CrossRef]
  3. P. B. Bisht, K. Fukuda, and S. Hirayama, “Steady-state and time-resolved fluorescence study of some dyes in polymer microspheres showing morphology dependent resonances,” J. Chem. Phys. 105, 9349-9361 (1996).
    [CrossRef]
  4. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using aspherical dielectric microcavity,” Nature (London) 415, 621-632 (2002).
    [CrossRef]
  5. S. D. Druger, S. Arnold, and M. Folan, “Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles,” J. Chem. Phys. 87, 2649-2659 (1987).
    [CrossRef]
  6. G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667-670 (1998).
    [CrossRef]
  7. K. K. Pandey and S. Hirayama, “Enhanced excitation energy transfer in microdroplets--a study by time-resolved fluorescence microscopy,” J. Photochem. Photobiol., A 99, 165-175 (1996).
    [CrossRef]
  8. H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” Chem. Phys. Chem. 6, 2410-2416 (2005).
    [CrossRef] [PubMed]
  9. A. Kiraz, S. Doğanay, A. Kurt, and A. L. Demirel, “Enhanced energy transfer in single glycerol/water microdroplets standing on a superhydrophobic surface,” Chem. Phys. Lett. 444, 181-185 (2007).
    [CrossRef]
  10. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
    [CrossRef]
  11. P. Sandeep and P. B. Bisht, “Concentration sensing based on radiative rate enhancement from a single microcavity,” Chem. Phys. Lett. 415, 15-19 (2005).
    [CrossRef]
  12. M. Tona and M. Kimura, “Dependence of lasing modes of microdroplets on dye concentration,” J. Phys. Soc. Jpn. 72, 1238-1243 (2003).
    [CrossRef]
  13. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475-478 (1980).
    [CrossRef]
  14. P. Sandeep and P. B. Bisht, “Cavity quantum electrodynamic effects and control of radiative rate of 9-amino acridine hydrochloride hydrate,” Chem. Phys. Lett. 371, 372-332 (2003).
    [CrossRef]
  15. P. Sandeep and P. B. Bisht, “Effect of adsorbed concentration on the radiative rate enhancement of photoexcited molecules embedded in single microspheres,” J. Chem. Phys. 123, 204713-204717 (2005).
    [CrossRef] [PubMed]
  16. H. M. Lai, P. T. Leung, and K. Young, “Electromagnetic decay into a narrow resonance in an optical microcavity,” Phys. Rev. A 37, 1597-1606 (1988).
    [CrossRef] [PubMed]
  17. P. Sandeep and P. B. Bisht, “Determination of femtosecond dephasing times of organic dyes confined in a single spherical microparticle,” Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science, M.M.Martin and J.T.Hynes, eds. (Elsevier, 2004), pp. 549-552.
    [CrossRef]
  18. P. G. Schiro and A. S. Kwok, “Cavity-enhanced emission from a dye-coated microsphere,” Opt. Express 12, 2857-2863 (2004).
    [CrossRef] [PubMed]
  19. A. M. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607-613 (2007).
    [CrossRef]
  20. S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379-384 (2006).
    [CrossRef]
  21. P. Sandeep and P. B. Bisht, “Photophysics of 9-amino acridine hydrochloride hydrate single microcrystals,” Chem. Phys. 326, 521-526 (2006).
    [CrossRef]
  22. P. B. Bisht, K. Fukuda, and S. Hirayama, “Size-dependent fluorescence emission spectra and lifetimes of microcrystals of the dye N, N′-Bis (2, 5-di-tert-butylphenyl)-3, 4:9, 10-perylenebis (dicarboxyimide) (DBPI) studied by confocal fluorescence microscopy,” J. Phys. Chem. B 101, 8054-8058 (1997).
    [CrossRef]
  23. J. Wang, M. Wang, L. Liu, W. Hao, B. Hou, and Y. Lu, “Light emission from a dye-coated glass microsphere,” J. Lumin. 122, 949-950 (2007).
    [CrossRef]
  24. J. N. Demas, Excited State Lifetime Measurement (Academic Press, 1983).
  25. C. F. Bohran and D. R. Hoffman, Absorption and scattering of light by small particles (Wiley, 1983).
  26. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 1969).
  27. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
    [CrossRef]
  28. R. L. Hightower and C. B. Richardson, “Resonant Mie scattering from a layered sphere,” Appl. Opt. 27, 4850-4855 (1988).
    [CrossRef] [PubMed]
  29. V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Strong interaction between a two-level atom and the whispering gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A 59, 2996-3013 (1999).
    [CrossRef]
  30. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62-67 (1984).
    [CrossRef]
  31. V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Spontaneous emission rate and level shift of an atom inside a dielectric microsphere,” J. Mod. Phys. 43, 549-563 (1996).
  32. H. Chew, “Radiation and lifetime of atoms inside dielectric particles,” Phys. Rev. A 38, 3410-3416 (1988).
    [CrossRef] [PubMed]
  33. H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801-4805 (1989).
    [CrossRef]
  34. M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842-7845 (1992).
    [CrossRef]
  35. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931-3934 (1996).
    [CrossRef] [PubMed]
  36. U. Tripathy and P. B. Bisht, “Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations,” J. Chem. Phys. 125, 144502-144508 (2006).
    [CrossRef] [PubMed]
  37. K. C. Jena and P. B. Bisht, “Excitation energy transfer in a weakly coupled system: studies with time-resolved fluorescence microscopy and laser induced transient grating techniques,” Chem. Phys. 314, 179-188 (2005).
    [CrossRef]
  38. H. B. Lin, J. D. Eversole, C. D. Merritt, and A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756-6760 (1992).
    [CrossRef] [PubMed]
  39. V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Radiative frequency shift and linewidth of an atom dipole in the vicinity of a dielectric microsphere,” J. Mod. Opt. 43, 2251-2267 (1996).
    [CrossRef]
  40. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355-1360 (1987).
    [CrossRef]

2007 (3)

A. Kiraz, S. Doğanay, A. Kurt, and A. L. Demirel, “Enhanced energy transfer in single glycerol/water microdroplets standing on a superhydrophobic surface,” Chem. Phys. Lett. 444, 181-185 (2007).
[CrossRef]

A. M. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607-613 (2007).
[CrossRef]

J. Wang, M. Wang, L. Liu, W. Hao, B. Hou, and Y. Lu, “Light emission from a dye-coated glass microsphere,” J. Lumin. 122, 949-950 (2007).
[CrossRef]

2006 (3)

U. Tripathy and P. B. Bisht, “Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations,” J. Chem. Phys. 125, 144502-144508 (2006).
[CrossRef] [PubMed]

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379-384 (2006).
[CrossRef]

P. Sandeep and P. B. Bisht, “Photophysics of 9-amino acridine hydrochloride hydrate single microcrystals,” Chem. Phys. 326, 521-526 (2006).
[CrossRef]

2005 (4)

P. Sandeep and P. B. Bisht, “Concentration sensing based on radiative rate enhancement from a single microcavity,” Chem. Phys. Lett. 415, 15-19 (2005).
[CrossRef]

P. Sandeep and P. B. Bisht, “Effect of adsorbed concentration on the radiative rate enhancement of photoexcited molecules embedded in single microspheres,” J. Chem. Phys. 123, 204713-204717 (2005).
[CrossRef] [PubMed]

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” Chem. Phys. Chem. 6, 2410-2416 (2005).
[CrossRef] [PubMed]

K. C. Jena and P. B. Bisht, “Excitation energy transfer in a weakly coupled system: studies with time-resolved fluorescence microscopy and laser induced transient grating techniques,” Chem. Phys. 314, 179-188 (2005).
[CrossRef]

2004 (1)

2003 (2)

P. Sandeep and P. B. Bisht, “Cavity quantum electrodynamic effects and control of radiative rate of 9-amino acridine hydrochloride hydrate,” Chem. Phys. Lett. 371, 372-332 (2003).
[CrossRef]

M. Tona and M. Kimura, “Dependence of lasing modes of microdroplets on dye concentration,” J. Phys. Soc. Jpn. 72, 1238-1243 (2003).
[CrossRef]

2002 (2)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using aspherical dielectric microcavity,” Nature (London) 415, 621-632 (2002).
[CrossRef]

1999 (1)

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Strong interaction between a two-level atom and the whispering gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A 59, 2996-3013 (1999).
[CrossRef]

1998 (1)

G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667-670 (1998).
[CrossRef]

1997 (1)

P. B. Bisht, K. Fukuda, and S. Hirayama, “Size-dependent fluorescence emission spectra and lifetimes of microcrystals of the dye N, N′-Bis (2, 5-di-tert-butylphenyl)-3, 4:9, 10-perylenebis (dicarboxyimide) (DBPI) studied by confocal fluorescence microscopy,” J. Phys. Chem. B 101, 8054-8058 (1997).
[CrossRef]

1996 (5)

K. K. Pandey and S. Hirayama, “Enhanced excitation energy transfer in microdroplets--a study by time-resolved fluorescence microscopy,” J. Photochem. Photobiol., A 99, 165-175 (1996).
[CrossRef]

P. B. Bisht, K. Fukuda, and S. Hirayama, “Steady-state and time-resolved fluorescence study of some dyes in polymer microspheres showing morphology dependent resonances,” J. Chem. Phys. 105, 9349-9361 (1996).
[CrossRef]

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Spontaneous emission rate and level shift of an atom inside a dielectric microsphere,” J. Mod. Phys. 43, 549-563 (1996).

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Radiative frequency shift and linewidth of an atom dipole in the vicinity of a dielectric microsphere,” J. Mod. Opt. 43, 2251-2267 (1996).
[CrossRef]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931-3934 (1996).
[CrossRef] [PubMed]

1992 (2)

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842-7845 (1992).
[CrossRef]

H. B. Lin, J. D. Eversole, C. D. Merritt, and A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756-6760 (1992).
[CrossRef] [PubMed]

1989 (1)

H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

1988 (3)

R. L. Hightower and C. B. Richardson, “Resonant Mie scattering from a layered sphere,” Appl. Opt. 27, 4850-4855 (1988).
[CrossRef] [PubMed]

H. Chew, “Radiation and lifetime of atoms inside dielectric particles,” Phys. Rev. A 38, 3410-3416 (1988).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, and K. Young, “Electromagnetic decay into a narrow resonance in an optical microcavity,” Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

1987 (2)

S. D. Druger, S. Arnold, and M. Folan, “Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles,” J. Chem. Phys. 87, 2649-2659 (1987).
[CrossRef]

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355-1360 (1987).
[CrossRef]

1984 (1)

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

1951 (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667-670 (1998).
[CrossRef]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931-3934 (1996).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842-7845 (1992).
[CrossRef]

S. D. Druger, S. Arnold, and M. Folan, “Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles,” J. Chem. Phys. 87, 2649-2659 (1987).
[CrossRef]

Ashida, S.

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379-384 (2006).
[CrossRef]

Barber, P. W.

P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62-67 (1984).
[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Barnes, M. D.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931-3934 (1996).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842-7845 (1992).
[CrossRef]

Beltaos, A. M.

A. M. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607-613 (2007).
[CrossRef]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Bisht, P. B.

P. Sandeep and P. B. Bisht, “Photophysics of 9-amino acridine hydrochloride hydrate single microcrystals,” Chem. Phys. 326, 521-526 (2006).
[CrossRef]

U. Tripathy and P. B. Bisht, “Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations,” J. Chem. Phys. 125, 144502-144508 (2006).
[CrossRef] [PubMed]

K. C. Jena and P. B. Bisht, “Excitation energy transfer in a weakly coupled system: studies with time-resolved fluorescence microscopy and laser induced transient grating techniques,” Chem. Phys. 314, 179-188 (2005).
[CrossRef]

P. Sandeep and P. B. Bisht, “Effect of adsorbed concentration on the radiative rate enhancement of photoexcited molecules embedded in single microspheres,” J. Chem. Phys. 123, 204713-204717 (2005).
[CrossRef] [PubMed]

P. Sandeep and P. B. Bisht, “Concentration sensing based on radiative rate enhancement from a single microcavity,” Chem. Phys. Lett. 415, 15-19 (2005).
[CrossRef]

P. Sandeep and P. B. Bisht, “Cavity quantum electrodynamic effects and control of radiative rate of 9-amino acridine hydrochloride hydrate,” Chem. Phys. Lett. 371, 372-332 (2003).
[CrossRef]

P. B. Bisht, K. Fukuda, and S. Hirayama, “Size-dependent fluorescence emission spectra and lifetimes of microcrystals of the dye N, N′-Bis (2, 5-di-tert-butylphenyl)-3, 4:9, 10-perylenebis (dicarboxyimide) (DBPI) studied by confocal fluorescence microscopy,” J. Phys. Chem. B 101, 8054-8058 (1997).
[CrossRef]

P. B. Bisht, K. Fukuda, and S. Hirayama, “Steady-state and time-resolved fluorescence study of some dyes in polymer microspheres showing morphology dependent resonances,” J. Chem. Phys. 105, 9349-9361 (1996).
[CrossRef]

P. Sandeep and P. B. Bisht, “Determination of femtosecond dephasing times of organic dyes confined in a single spherical microparticle,” Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science, M.M.Martin and J.T.Hynes, eds. (Elsevier, 2004), pp. 549-552.
[CrossRef]

Bohran, C. F.

C. F. Bohran and D. R. Hoffman, Absorption and scattering of light by small particles (Wiley, 1983).

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Brorson, S. D.

H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

Campillo, A. J.

H. B. Lin, J. D. Eversole, C. D. Merritt, and A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756-6760 (1992).
[CrossRef] [PubMed]

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific Publishing Co., 1996).
[CrossRef]

Chang, R. K.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific Publishing Co., 1996).
[CrossRef]

Chew, H.

H. Chew, “Radiation and lifetime of atoms inside dielectric particles,” Phys. Rev. A 38, 3410-3416 (1988).
[CrossRef] [PubMed]

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355-1360 (1987).
[CrossRef]

Conwell, P. R.

Demas, J. N.

J. N. Demas, Excited State Lifetime Measurement (Academic Press, 1983).

Demirel, A. L.

A. Kiraz, S. Doğanay, A. Kurt, and A. L. Demirel, “Enhanced energy transfer in single glycerol/water microdroplets standing on a superhydrophobic surface,” Chem. Phys. Lett. 444, 181-185 (2007).
[CrossRef]

Doganay, S.

A. Kiraz, S. Doğanay, A. Kurt, and A. L. Demirel, “Enhanced energy transfer in single glycerol/water microdroplets standing on a superhydrophobic surface,” Chem. Phys. Lett. 444, 181-185 (2007).
[CrossRef]

Druger, S. D.

S. D. Druger, S. Arnold, and M. Folan, “Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles,” J. Chem. Phys. 87, 2649-2659 (1987).
[CrossRef]

Ducloy, M.

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Strong interaction between a two-level atom and the whispering gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A 59, 2996-3013 (1999).
[CrossRef]

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Spontaneous emission rate and level shift of an atom inside a dielectric microsphere,” J. Mod. Phys. 43, 549-563 (1996).

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Radiative frequency shift and linewidth of an atom dipole in the vicinity of a dielectric microsphere,” J. Mod. Opt. 43, 2251-2267 (1996).
[CrossRef]

Eversole, J. D.

H. B. Lin, J. D. Eversole, C. D. Merritt, and A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756-6760 (1992).
[CrossRef] [PubMed]

Folan, M.

S. D. Druger, S. Arnold, and M. Folan, “Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles,” J. Chem. Phys. 87, 2649-2659 (1987).
[CrossRef]

Fujiwara, H.

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” Chem. Phys. Chem. 6, 2410-2416 (2005).
[CrossRef] [PubMed]

Fukuda, K.

P. B. Bisht, K. Fukuda, and S. Hirayama, “Size-dependent fluorescence emission spectra and lifetimes of microcrystals of the dye N, N′-Bis (2, 5-di-tert-butylphenyl)-3, 4:9, 10-perylenebis (dicarboxyimide) (DBPI) studied by confocal fluorescence microscopy,” J. Phys. Chem. B 101, 8054-8058 (1997).
[CrossRef]

P. B. Bisht, K. Fukuda, and S. Hirayama, “Steady-state and time-resolved fluorescence study of some dyes in polymer microspheres showing morphology dependent resonances,” J. Chem. Phys. 105, 9349-9361 (1996).
[CrossRef]

Gupta, S. D.

G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667-670 (1998).
[CrossRef]

Hao, W.

J. Wang, M. Wang, L. Liu, W. Hao, B. Hou, and Y. Lu, “Light emission from a dye-coated glass microsphere,” J. Lumin. 122, 949-950 (2007).
[CrossRef]

Hightower, R. L.

Hirayama, S.

P. B. Bisht, K. Fukuda, and S. Hirayama, “Size-dependent fluorescence emission spectra and lifetimes of microcrystals of the dye N, N′-Bis (2, 5-di-tert-butylphenyl)-3, 4:9, 10-perylenebis (dicarboxyimide) (DBPI) studied by confocal fluorescence microscopy,” J. Phys. Chem. B 101, 8054-8058 (1997).
[CrossRef]

P. B. Bisht, K. Fukuda, and S. Hirayama, “Steady-state and time-resolved fluorescence study of some dyes in polymer microspheres showing morphology dependent resonances,” J. Chem. Phys. 105, 9349-9361 (1996).
[CrossRef]

K. K. Pandey and S. Hirayama, “Enhanced excitation energy transfer in microdroplets--a study by time-resolved fluorescence microscopy,” J. Photochem. Photobiol., A 99, 165-175 (1996).
[CrossRef]

Hoffman, D. R.

C. F. Bohran and D. R. Hoffman, Absorption and scattering of light by small particles (Wiley, 1983).

Holler, S.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931-3934 (1996).
[CrossRef] [PubMed]

Hou, B.

J. Wang, M. Wang, L. Liu, W. Hao, B. Hou, and Y. Lu, “Light emission from a dye-coated glass microsphere,” J. Lumin. 122, 949-950 (2007).
[CrossRef]

Jena, K. C.

K. C. Jena and P. B. Bisht, “Excitation energy transfer in a weakly coupled system: studies with time-resolved fluorescence microscopy and laser induced transient grating techniques,” Chem. Phys. 314, 179-188 (2005).
[CrossRef]

Kerker, M.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 1969).

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Kimura, M.

M. Tona and M. Kimura, “Dependence of lasing modes of microdroplets on dye concentration,” J. Phys. Soc. Jpn. 72, 1238-1243 (2003).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using aspherical dielectric microcavity,” Nature (London) 415, 621-632 (2002).
[CrossRef]

Kiraz, A.

A. Kiraz, S. Doğanay, A. Kurt, and A. L. Demirel, “Enhanced energy transfer in single glycerol/water microdroplets standing on a superhydrophobic surface,” Chem. Phys. Lett. 444, 181-185 (2007).
[CrossRef]

Klimov, V. V.

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Strong interaction between a two-level atom and the whispering gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A 59, 2996-3013 (1999).
[CrossRef]

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Spontaneous emission rate and level shift of an atom inside a dielectric microsphere,” J. Mod. Phys. 43, 549-563 (1996).

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Radiative frequency shift and linewidth of an atom dipole in the vicinity of a dielectric microsphere,” J. Mod. Opt. 43, 2251-2267 (1996).
[CrossRef]

Kung, C.-Y.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931-3934 (1996).
[CrossRef] [PubMed]

Kurt, A.

A. Kiraz, S. Doğanay, A. Kurt, and A. L. Demirel, “Enhanced energy transfer in single glycerol/water microdroplets standing on a superhydrophobic surface,” Chem. Phys. Lett. 444, 181-185 (2007).
[CrossRef]

Kwok, A. S.

Lai, H. M.

H. M. Lai, P. T. Leung, and K. Young, “Electromagnetic decay into a narrow resonance in an optical microcavity,” Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

Lethokhov, V. S.

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Strong interaction between a two-level atom and the whispering gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A 59, 2996-3013 (1999).
[CrossRef]

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Spontaneous emission rate and level shift of an atom inside a dielectric microsphere,” J. Mod. Phys. 43, 549-563 (1996).

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Radiative frequency shift and linewidth of an atom dipole in the vicinity of a dielectric microsphere,” J. Mod. Opt. 43, 2251-2267 (1996).
[CrossRef]

Leung, P. T.

H. M. Lai, P. T. Leung, and K. Young, “Electromagnetic decay into a narrow resonance in an optical microcavity,” Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Lin, H. B.

H. B. Lin, J. D. Eversole, C. D. Merritt, and A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756-6760 (1992).
[CrossRef] [PubMed]

Liu, L.

J. Wang, M. Wang, L. Liu, W. Hao, B. Hou, and Y. Lu, “Light emission from a dye-coated glass microsphere,” J. Lumin. 122, 949-950 (2007).
[CrossRef]

Lu, Y.

J. Wang, M. Wang, L. Liu, W. Hao, B. Hou, and Y. Lu, “Light emission from a dye-coated glass microsphere,” J. Lumin. 122, 949-950 (2007).
[CrossRef]

Masuhara, H.

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” Chem. Phys. Chem. 6, 2410-2416 (2005).
[CrossRef] [PubMed]

Meldrum, A.

A. M. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607-613 (2007).
[CrossRef]

Merritt, C. D.

H. B. Lin, J. D. Eversole, C. D. Merritt, and A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756-6760 (1992).
[CrossRef] [PubMed]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Pandey, K. K.

K. K. Pandey and S. Hirayama, “Enhanced excitation energy transfer in microdroplets--a study by time-resolved fluorescence microscopy,” J. Photochem. Photobiol., A 99, 165-175 (1996).
[CrossRef]

Ramsey, J. M.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931-3934 (1996).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842-7845 (1992).
[CrossRef]

Richardson, C. B.

Rushforth, C. K.

Sandeep, P.

P. Sandeep and P. B. Bisht, “Photophysics of 9-amino acridine hydrochloride hydrate single microcrystals,” Chem. Phys. 326, 521-526 (2006).
[CrossRef]

P. Sandeep and P. B. Bisht, “Effect of adsorbed concentration on the radiative rate enhancement of photoexcited molecules embedded in single microspheres,” J. Chem. Phys. 123, 204713-204717 (2005).
[CrossRef] [PubMed]

P. Sandeep and P. B. Bisht, “Concentration sensing based on radiative rate enhancement from a single microcavity,” Chem. Phys. Lett. 415, 15-19 (2005).
[CrossRef]

P. Sandeep and P. B. Bisht, “Cavity quantum electrodynamic effects and control of radiative rate of 9-amino acridine hydrochloride hydrate,” Chem. Phys. Lett. 371, 372-332 (2003).
[CrossRef]

P. Sandeep and P. B. Bisht, “Determination of femtosecond dephasing times of organic dyes confined in a single spherical microparticle,” Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science, M.M.Martin and J.T.Hynes, eds. (Elsevier, 2004), pp. 549-552.
[CrossRef]

Sasaki, K.

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” Chem. Phys. Chem. 6, 2410-2416 (2005).
[CrossRef] [PubMed]

Schiro, P. G.

Segawa, H.

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379-384 (2006).
[CrossRef]

Shibata, S.

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379-384 (2006).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using aspherical dielectric microcavity,” Nature (London) 415, 621-632 (2002).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Tona, M.

M. Tona and M. Kimura, “Dependence of lasing modes of microdroplets on dye concentration,” J. Phys. Soc. Jpn. 72, 1238-1243 (2003).
[CrossRef]

Tripathy, U.

U. Tripathy and P. B. Bisht, “Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations,” J. Chem. Phys. 125, 144502-144508 (2006).
[CrossRef] [PubMed]

Vahala, K.

K. Vahala, Optical Microcavities (World Scientific Publishing Co., 2004).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using aspherical dielectric microcavity,” Nature (London) 415, 621-632 (2002).
[CrossRef]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Wang, J.

J. Wang, M. Wang, L. Liu, W. Hao, B. Hou, and Y. Lu, “Light emission from a dye-coated glass microsphere,” J. Lumin. 122, 949-950 (2007).
[CrossRef]

Wang, M.

J. Wang, M. Wang, L. Liu, W. Hao, B. Hou, and Y. Lu, “Light emission from a dye-coated glass microsphere,” J. Lumin. 122, 949-950 (2007).
[CrossRef]

Whitten, W. B.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931-3934 (1996).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842-7845 (1992).
[CrossRef]

Yano, T.

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379-384 (2006).
[CrossRef]

Yokoyama, H.

H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

Young, K.

H. M. Lai, P. T. Leung, and K. Young, “Electromagnetic decay into a narrow resonance in an optical microcavity,” Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Chem. Phys. (2)

P. Sandeep and P. B. Bisht, “Photophysics of 9-amino acridine hydrochloride hydrate single microcrystals,” Chem. Phys. 326, 521-526 (2006).
[CrossRef]

K. C. Jena and P. B. Bisht, “Excitation energy transfer in a weakly coupled system: studies with time-resolved fluorescence microscopy and laser induced transient grating techniques,” Chem. Phys. 314, 179-188 (2005).
[CrossRef]

Chem. Phys. Chem. (1)

H. Fujiwara, K. Sasaki, and H. Masuhara, “Enhancement of Förster energy transfer within a microspherical cavity,” Chem. Phys. Chem. 6, 2410-2416 (2005).
[CrossRef] [PubMed]

Chem. Phys. Lett. (3)

A. Kiraz, S. Doğanay, A. Kurt, and A. L. Demirel, “Enhanced energy transfer in single glycerol/water microdroplets standing on a superhydrophobic surface,” Chem. Phys. Lett. 444, 181-185 (2007).
[CrossRef]

P. Sandeep and P. B. Bisht, “Concentration sensing based on radiative rate enhancement from a single microcavity,” Chem. Phys. Lett. 415, 15-19 (2005).
[CrossRef]

P. Sandeep and P. B. Bisht, “Cavity quantum electrodynamic effects and control of radiative rate of 9-amino acridine hydrochloride hydrate,” Chem. Phys. Lett. 371, 372-332 (2003).
[CrossRef]

J. Appl. Phys. (2)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

J. Chem. Phys. (6)

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842-7845 (1992).
[CrossRef]

U. Tripathy and P. B. Bisht, “Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations,” J. Chem. Phys. 125, 144502-144508 (2006).
[CrossRef] [PubMed]

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355-1360 (1987).
[CrossRef]

P. Sandeep and P. B. Bisht, “Effect of adsorbed concentration on the radiative rate enhancement of photoexcited molecules embedded in single microspheres,” J. Chem. Phys. 123, 204713-204717 (2005).
[CrossRef] [PubMed]

S. D. Druger, S. Arnold, and M. Folan, “Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles,” J. Chem. Phys. 87, 2649-2659 (1987).
[CrossRef]

P. B. Bisht, K. Fukuda, and S. Hirayama, “Steady-state and time-resolved fluorescence study of some dyes in polymer microspheres showing morphology dependent resonances,” J. Chem. Phys. 105, 9349-9361 (1996).
[CrossRef]

J. Lumin. (2)

A. M. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607-613 (2007).
[CrossRef]

J. Wang, M. Wang, L. Liu, W. Hao, B. Hou, and Y. Lu, “Light emission from a dye-coated glass microsphere,” J. Lumin. 122, 949-950 (2007).
[CrossRef]

J. Mod. Opt. (1)

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Radiative frequency shift and linewidth of an atom dipole in the vicinity of a dielectric microsphere,” J. Mod. Opt. 43, 2251-2267 (1996).
[CrossRef]

J. Mod. Phys. (1)

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Spontaneous emission rate and level shift of an atom inside a dielectric microsphere,” J. Mod. Phys. 43, 549-563 (1996).

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol., A (1)

K. K. Pandey and S. Hirayama, “Enhanced excitation energy transfer in microdroplets--a study by time-resolved fluorescence microscopy,” J. Photochem. Photobiol., A 99, 165-175 (1996).
[CrossRef]

J. Phys. Chem. B (1)

P. B. Bisht, K. Fukuda, and S. Hirayama, “Size-dependent fluorescence emission spectra and lifetimes of microcrystals of the dye N, N′-Bis (2, 5-di-tert-butylphenyl)-3, 4:9, 10-perylenebis (dicarboxyimide) (DBPI) studied by confocal fluorescence microscopy,” J. Phys. Chem. B 101, 8054-8058 (1997).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Tona and M. Kimura, “Dependence of lasing modes of microdroplets on dye concentration,” J. Phys. Soc. Jpn. 72, 1238-1243 (2003).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379-384 (2006).
[CrossRef]

Nature (London) (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using aspherical dielectric microcavity,” Nature (London) 415, 621-632 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (5)

V. V. Klimov, M. Ducloy, and V. S. Lethokhov, “Strong interaction between a two-level atom and the whispering gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A 59, 2996-3013 (1999).
[CrossRef]

H. Chew, “Radiation and lifetime of atoms inside dielectric particles,” Phys. Rev. A 38, 3410-3416 (1988).
[CrossRef] [PubMed]

G. S. Agarwal and S. D. Gupta, “Microcavity-induced modification of the dipole-dipole interaction,” Phys. Rev. A 57, 667-670 (1998).
[CrossRef]

H. M. Lai, P. T. Leung, and K. Young, “Electromagnetic decay into a narrow resonance in an optical microcavity,” Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

H. B. Lin, J. D. Eversole, C. D. Merritt, and A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756-6760 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931-3934 (1996).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Other (6)

P. Sandeep and P. B. Bisht, “Determination of femtosecond dephasing times of organic dyes confined in a single spherical microparticle,” Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science, M.M.Martin and J.T.Hynes, eds. (Elsevier, 2004), pp. 549-552.
[CrossRef]

K. Vahala, Optical Microcavities (World Scientific Publishing Co., 2004).
[CrossRef]

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific Publishing Co., 1996).
[CrossRef]

J. N. Demas, Excited State Lifetime Measurement (Academic Press, 1983).

C. F. Bohran and D. R. Hoffman, Absorption and scattering of light by small particles (Wiley, 1983).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of (a) a doped and (b) a coated microsphere. r 1 is the radius, and m 1 is the refractive index of the core of the uncoated (homogeneous) microsphere. r 2 is the radius of the coated microsphere. m 2 is the refractive index of the coated layer (or the mantle).

Fig. 2
Fig. 2

(a) Fluorescence spectrum of R6G-doped 6 μ m diameter single PMMA bead sitting on a glass plate. (b) Calculated scattering efficiency for a bead of r = 2.9685 μ m and m = 1.495 . The size parameter range is 31.72–32.61.

Fig. 3
Fig. 3

(a) Fluorescence spectrum of RB-coated single silica bead sitting on a glass plate. (b) Calculated scattering efficiency for a coated bead. Here r 1 - r 2 gives the thickness of the mantle. (c) Simulations of homogeneous sphere of nearby size. (d) Assignment of modes.

Fig. 4
Fig. 4

(a) Experimentally observed spectrum of R6G doped single PMMA bead of 13 μ m diameter. (b) The calculated scattering efficiency spectrum ( r = 6.0605 , m = 1.495 ) with Δ x = 10 4 . The size parameter range is 58.59–61.52.

Fig. 5
Fig. 5

Plot of simulated scattering efficiency versus size parameter for a microsphere of refractive index 1.495 indicating the regions of well-resolved and unresolved modes.

Fig. 6
Fig. 6

Scattering efficiency versus size parameter for two different resolutions in a given size parameter region. The number of peaks remains the same with a ten-fold increase in the resolution. The assignment of the peaks confirms the presence of all the modes.

Fig. 7
Fig. 7

(a) Portion of the experimental spectrum shown in Fig. 4. (b) Scattering efficiency spectrum for a bead of r = 6.0605 μ m and m = 1.495 with low resolution calculations ( Δ x = 10 4 ) . Thick arrows indicate the generated peaks by the extrapolating procedure described in the text. (c) High-resolution calculations ( Δ x = 10 7 ) for a small region.

Fig. 8
Fig. 8

Fluorescence decay profile of RB-doped single PMMA bead ( r = 5 μ m , λ exc = 470 nm ). The data points are indicated by circles (○) and the thick line shows the single exponential fitting.

Fig. 9
Fig. 9

(a) Fluorescence decay profile of RB coated on silica beads ( C = 10 4 M ) of diameter ( A ) = 33 μ m and ( B ) = 15 μ m . (b) Typical residual distribution is shown for the fitting for curve B. Decay profile of the RB microcrystal and the corresponding residuals are shown in (c) and (d), respectively. See the text for details.

Fig. 10
Fig. 10

Plot of the ratio ( ξ ξ 0 ) of radiative rates of RB observed in coated silica beads with 10 4 M RB as a function of the bead size. The values of the radiative rates obtained for a coated bead of 33 μ m diameter are taken to be those due to bulk ( ξ 0 ) . See Table 3 for details.

Fig. 11
Fig. 11

(a) Effect of imaginary refractive index on the WGMs. The first-order modes lose their intensities for absorbing microcavities. (b) Expanded view of a first-order mode. Data offset for clarity.

Fig. 12
Fig. 12

The fluorescence spectra of RB coated single silica bead with exposure times of (a) 0 and (b) 4 min . Data offset for clarity.

Tables (4)

Tables Icon

Table 1 Q Values Observed in Doped and Coated Beads

Tables Icon

Table 2 Fluorescence Lifetimes of RB-doped Single PMMA Beads of Various Sizes

Tables Icon

Table 3 Fluorescence Lifetimes of RB-coated Single Glass Beads with Different Concentrations (C)

Tables Icon

Table 4 Fluorescence Lifetimes of Single RB Microcrystals

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 2 π m med r 1 tan 1 [ ( ( m 1 m med ) 2 1 ) 1 2 ] ( ( m 1 m med ) 2 1 ) 1 2 ,
Q s = 2 π k 2 n = 1 ( 2 n + 1 ) ( a n s 2 + b n s 2 ) ,
a s n = ψ n ( x 2 ) [ ψ n ( m 2 x 2 ) A n χ n ( m 2 x 2 ) ] m 2 ψ n ( x 2 ) [ ψ n ( m 2 x 2 ) A n χ n ( m 2 x 2 ) ] ζ n ( x 2 ) [ ψ n ( m 2 x 2 ) A n χ n ( m 2 x 2 ) ] m 2 ζ ( x 2 ) [ ψ n ( m 2 x 2 ) A n χ n ( m 2 x 2 ) ] ,
b s n = m 2 ψ n ( x 2 ) [ ψ n ( m 2 x 2 ) B n χ n ( m 2 x 2 ) ] ψ n ( x 2 ) [ ψ n ( m 2 x 2 ) B n χ n ( m 2 x 2 ) ] m 2 ζ n ( x 2 ) [ ψ n ( m 2 x 2 ) B n χ n ( m 2 x 2 ) ] ζ n ( x 2 ) [ ψ n ( m 2 x 2 ) B n χ n ( m 2 x 2 ) ] .
ψ n ( s ) = s j n ( s ) , χ n ( s ) = s n n ( s ) and ζ n ( s ) = s h ( 1 ) n ( s ) .
A n = m 2 ψ n ( m 2 x 1 ) ψ n ( m 1 x 1 ) m 1 ψ n ( m 2 x 1 ) ψ n ( m 1 x 1 ) m 2 χ n ( m 2 x 1 ) ψ n ( m 1 x 1 ) m 1 χ n ( m 2 x 1 ) ψ n ( m 1 x 1 ) ,
B n = m 2 ψ n ( m 2 x 1 ) ψ n ( m 1 x 1 ) m 1 ψ n ( m 2 x 1 ) ψ n ( m 1 x 1 ) m 2 χ n ( m 2 x 1 ) ψ n ( m 1 x 1 ) m 1 χ n ( m 2 x 1 ) ψ n ( m 1 x 1 ) .
[ m x j n ( m x ) ] m 2 j n ( m x ) = [ x h n ( 1 ) ( x ) ] h n ( 1 ) ( x ) ( For a TE case ) ,
[ m j n ( m x ) ] m 2 j n ( m x ) = [ x h n ( 1 ) ( x ) ] h n ( 1 ) ( x ) ( For a TM case ) .
I ( t ) = A exp ( t τ )
I ( t ) = B 1 e t τ 1 + B 2 e t τ 2 ,
f 1 = B 1 τ 1 B 1 τ 1 + B 2 τ 2 and f 2 = B 2 τ 2 B 1 τ 1 + B 2 τ 2 .

Metrics