Abstract

Subwavelength-diameter tapered optical fibers surrounded by rubidium vapor can undergo a substantial decrease in transmission at high atomic densities due to the accumulation of rubidium atoms on the surface of the fiber. Here we demonstrate the ability to control these changes in transmission using light guided within the taper. We observe transmission through a tapered fiber that is a nonlinear function of the incident power. This effect can also allow a strong control beam to change the transmission of a weak probe beam.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  2. A. Leunga, P. Shankarb, and R. Mutharasana, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688-703 (2007).
    [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  4. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. Wigley, and G. I. Stegeman, “Enhanced self-phase modulation in tapered fibers,” Opt. Lett. 18, 1996-1998 (1993).
    [CrossRef] [PubMed]
  5. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  6. F. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
    [CrossRef]
  7. V. I. Balykin, K. Hakuta, F. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401(R) (2004).
    [CrossRef]
  8. F. Kien, V. I. Balykin, and K. Hakuta, “Light-induced force and torque on an atom outside a nanofiber,” Phys. Rev. A 74, 033412 (2006).
    [CrossRef]
  9. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431-5438 (2007).
    [CrossRef] [PubMed]
  10. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15, 11952-11958 (2007).
    [CrossRef] [PubMed]
  11. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
    [CrossRef] [PubMed]
  12. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  13. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
    [CrossRef] [PubMed]
  14. M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, and L. Moi, “Light-induced atom desorption,” Europhys. Lett. 25, 639-643 (1994).
    [CrossRef]
  15. E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
    [CrossRef]
  16. A. Hatakeyama, M. Wilde, and K. Fukutani, “Classification of light-induced desorption of alkali atoms in glass cells used in atomic physics experiments,” e-J. Surf. Sci. Nanotechnol. 4, 63-68 (2006).
    [CrossRef]
  17. C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
    [CrossRef]
  18. C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
    [CrossRef]
  19. Comparison with earlier experimental measurements of the rate of desorption due to LIAD suggest that LIAD alone may not be able to produce the effects observed here, and that heating of the tapered region may play an important role. A quantitative comparison of the effects of LIAD is complicated, however, by the uncertainties in the surface properties, especially the rate of re-absorption of atoms onto the surface from the atomic vapor, and this issue requires further study.
  20. E. Abraham and E. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Opt. 37, 1762-1763 (1998).
    [CrossRef]
  21. The hysteresis observed in the measurements is consistent with thermal heating of the tapered region of the fiber. LIAD could also produce hysteresis effects if a significant amount of time is required to desorb a thick layer of atoms or for atoms to diffuse out of the surface of the silica.
  22. M. Morrissey, K. Deasy, T. Bandi, and S. Nic Chormaic, “Atomic absorption from the evanescent field of a sub-micron fibre taper,” CLEO/IQEC Europe (Munich, Germany June 2007), Poster IA-3-TUE.
  23. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  24. N. Bloembergen, “Nonlinear optics and spectroscopy,” Rev. Mod. Phys. 54, 685-695 (1982).
    [CrossRef]
  25. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004-155014 (2008).
    [CrossRef]
  26. It is also possible that a thick layer of metallic rubidium on the surface of the tapered region could modify the mode structure and thereby reduce the evanescent field, although we believe that to be less likely.

2008

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef] [PubMed]

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004-155014 (2008).
[CrossRef]

2007

2006

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

A. Hatakeyama, M. Wilde, and K. Fukutani, “Classification of light-induced desorption of alkali atoms in glass cells used in atomic physics experiments,” e-J. Surf. Sci. Nanotechnol. 4, 63-68 (2006).
[CrossRef]

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
[CrossRef]

F. Kien, V. I. Balykin, and K. Hakuta, “Light-induced force and torque on an atom outside a nanofiber,” Phys. Rev. A 74, 033412 (2006).
[CrossRef]

2004

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

F. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

V. I. Balykin, K. Hakuta, F. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401(R) (2004).
[CrossRef]

2003

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

2002

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

2000

1998

1994

M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, and L. Moi, “Light-induced atom desorption,” Europhys. Lett. 25, 639-643 (1994).
[CrossRef]

1993

1992

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

1982

N. Bloembergen, “Nonlinear optics and spectroscopy,” Rev. Mod. Phys. 54, 685-695 (1982).
[CrossRef]

Abraham, E.

Adams, C. S.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004-155014 (2008).
[CrossRef]

Alexandrov, E. B.

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

Arit, J.

C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
[CrossRef]

Balabas, M. V.

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431-5438 (2007).
[CrossRef] [PubMed]

F. Kien, V. I. Balykin, and K. Hakuta, “Light-induced force and torque on an atom outside a nanofiber,” Phys. Rev. A 74, 033412 (2006).
[CrossRef]

V. I. Balykin, K. Hakuta, F. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401(R) (2004).
[CrossRef]

F. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Bandi, T.

M. Morrissey, K. Deasy, T. Bandi, and S. Nic Chormaic, “Atomic absorption from the evanescent field of a sub-micron fibre taper,” CLEO/IQEC Europe (Munich, Germany June 2007), Poster IA-3-TUE.

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef] [PubMed]

Bevilacqua, G.

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

Bhagwat, A. R.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Bicchi, P.

M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, and L. Moi, “Light-induced atom desorption,” Europhys. Lett. 25, 639-643 (1994).
[CrossRef]

Birks, T. A.

Bloembergen, N.

N. Bloembergen, “Nonlinear optics and spectroscopy,” Rev. Mod. Phys. 54, 685-695 (1982).
[CrossRef]

Bogi, A.

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Budker, D.

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

Burchianti, A.

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

Bures, J.

Cornell, E.

Deasy, K.

M. Morrissey, K. Deasy, T. Bandi, and S. Nic Chormaic, “Atomic absorption from the evanescent field of a sub-micron fibre taper,” CLEO/IQEC Europe (Munich, Germany June 2007), Poster IA-3-TUE.

Della Valle, F.

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

Dumais, P.

English, D.

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

Ertmer, W.

C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
[CrossRef]

Fukutani, K.

A. Hatakeyama, M. Wilde, and K. Fukutani, “Classification of light-induced desorption of alkali atoms in glass cells used in atomic physics experiments,” e-J. Surf. Sci. Nanotechnol. 4, 63-68 (2006).
[CrossRef]

Gaeta, A. L.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Ge, C.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004-155014 (2008).
[CrossRef]

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Gonthier, F.

Hakuta, K.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431-5438 (2007).
[CrossRef] [PubMed]

F. Kien, V. I. Balykin, and K. Hakuta, “Light-induced force and torque on an atom outside a nanofiber,” Phys. Rev. A 74, 033412 (2006).
[CrossRef]

F. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

V. I. Balykin, K. Hakuta, F. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401(R) (2004).
[CrossRef]

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef] [PubMed]

Hatakeyama, A.

A. Hatakeyama, M. Wilde, and K. Fukutani, “Classification of light-induced desorption of alkali atoms in glass cells used in atomic physics experiments,” e-J. Surf. Sci. Nanotechnol. 4, 63-68 (2006).
[CrossRef]

Henninger, T.

C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
[CrossRef]

Hughes, I. G.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004-155014 (2008).
[CrossRef]

Kien, F.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431-5438 (2007).
[CrossRef] [PubMed]

F. Kien, V. I. Balykin, and K. Hakuta, “Light-induced force and torque on an atom outside a nanofiber,” Phys. Rev. A 74, 033412 (2006).
[CrossRef]

F. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

V. I. Balykin, K. Hakuta, F. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401(R) (2004).
[CrossRef]

Kimball, D. F.

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Klempt, C.

C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
[CrossRef]

Kumar, P.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef] [PubMed]

Lacroix, S.

Leunga, A.

A. Leunga, P. Shankarb, and R. Mutharasana, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688-703 (2007).
[CrossRef]

Li, C. H.

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Liang, J. Q.

V. I. Balykin, K. Hakuta, F. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401(R) (2004).
[CrossRef]

Lou, J.

Marinelli, C.

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, and L. Moi, “Light-induced atom desorption,” Europhys. Lett. 25, 639-643 (1994).
[CrossRef]

Mariotti, E.

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, and L. Moi, “Light-induced atom desorption,” Europhys. Lett. 25, 639-643 (1994).
[CrossRef]

Mazur, E.

Melentiev, P. N.

Meschede, D.

Meucci, M.

M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, and L. Moi, “Light-induced atom desorption,” Europhys. Lett. 25, 639-643 (1994).
[CrossRef]

Moi, L.

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, and L. Moi, “Light-induced atom desorption,” Europhys. Lett. 25, 639-643 (1994).
[CrossRef]

Morinaga, M.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431-5438 (2007).
[CrossRef] [PubMed]

V. I. Balykin, K. Hakuta, F. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401(R) (2004).
[CrossRef]

Morrissey, M.

M. Morrissey, K. Deasy, T. Bandi, and S. Nic Chormaic, “Atomic absorption from the evanescent field of a sub-micron fibre taper,” CLEO/IQEC Europe (Munich, Germany June 2007), Poster IA-3-TUE.

Mutharasana, R.

A. Leunga, P. Shankarb, and R. Mutharasana, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688-703 (2007).
[CrossRef]

Nayak, K. P.

Nic Chormaic, S.

M. Morrissey, K. Deasy, T. Bandi, and S. Nic Chormaic, “Atomic absorption from the evanescent field of a sub-micron fibre taper,” CLEO/IQEC Europe (Munich, Germany June 2007), Poster IA-3-TUE.

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Pati, G. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef] [PubMed]

Rasel, E.

C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
[CrossRef]

Rauschenbeutel, A.

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Russell, P. St. J.

Salit, K.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef] [PubMed]

Shahriar, M. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef] [PubMed]

Shankarb, P.

A. Leunga, P. Shankarb, and R. Mutharasana, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688-703 (2007).
[CrossRef]

Siddons, P.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004-155014 (2008).
[CrossRef]

Sokolowski, M.

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Stegeman, G. I.

Tong, L.

Topic, O.

C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Van Zoest, T.

C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
[CrossRef]

Vavilov, S. I.

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

Veronsi, S.

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

Vetsch, E.

Villeneuve, A.

Wadsworth, W. J.

Warken, F.

Wigley, P.

Wilde, M.

A. Hatakeyama, M. Wilde, and K. Fukutani, “Classification of light-induced desorption of alkali atoms in glass cells used in atomic physics experiments,” e-J. Surf. Sci. Nanotechnol. 4, 63-68 (2006).
[CrossRef]

Yashchuk, V. V.

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

Appl. Opt.

e-J. Surf. Sci. Nanotechnol.

A. Hatakeyama, M. Wilde, and K. Fukutani, “Classification of light-induced desorption of alkali atoms in glass cells used in atomic physics experiments,” e-J. Surf. Sci. Nanotechnol. 4, 63-68 (2006).
[CrossRef]

Eur. Phys. J. D

C. Marinelli, A. Burchianti, A. Bogi, F. Della Valle, G. Bevilacqua, E. Mariotti, S. Veronsi, and L. Moi, “Desorption of Rb and Cs from PDMS induced by non resonant light scattering,” Eur. Phys. J. D 37, 319-325 (2006).
[CrossRef]

Europhys. Lett.

M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, and L. Moi, “Light-induced atom desorption,” Europhys. Lett. 25, 639-643 (1994).
[CrossRef]

J. Lightwave Technol.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

J. Phys. B

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004-155014 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

F. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

V. I. Balykin, K. Hakuta, F. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401(R) (2004).
[CrossRef]

F. Kien, V. I. Balykin, and K. Hakuta, “Light-induced force and torque on an atom outside a nanofiber,” Phys. Rev. A 74, 033412 (2006).
[CrossRef]

E. B. Alexandrov, M. V. Balabas, S. I. Vavilov, D. Budker, D. English, D. F. Kimball, C. H. Li, and V. V. Yashchuk, “Light-induced desorption of alkali-metal atoms from paraffin coating,” Phys. Rev. A 66, 042903 (2002).
[CrossRef]

C. Klempt, T. Van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ertmer, and J. Arit, “Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps,” Phys. Rev. A 73, 013410 (2006).
[CrossRef]

Phys. Rev. Lett.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys.

N. Bloembergen, “Nonlinear optics and spectroscopy,” Rev. Mod. Phys. 54, 685-695 (1982).
[CrossRef]

Sens. Actuators B

A. Leunga, P. Shankarb, and R. Mutharasana, “A review of fiber-optic biosensors,” Sens. Actuators B 125, 688-703 (2007).
[CrossRef]

Other

Comparison with earlier experimental measurements of the rate of desorption due to LIAD suggest that LIAD alone may not be able to produce the effects observed here, and that heating of the tapered region may play an important role. A quantitative comparison of the effects of LIAD is complicated, however, by the uncertainties in the surface properties, especially the rate of re-absorption of atoms onto the surface from the atomic vapor, and this issue requires further study.

It is also possible that a thick layer of metallic rubidium on the surface of the tapered region could modify the mode structure and thereby reduce the evanescent field, although we believe that to be less likely.

The hysteresis observed in the measurements is consistent with thermal heating of the tapered region of the fiber. LIAD could also produce hysteresis effects if a significant amount of time is required to desorb a thick layer of atoms or for atoms to diffuse out of the surface of the silica.

M. Morrissey, K. Deasy, T. Bandi, and S. Nic Chormaic, “Atomic absorption from the evanescent field of a sub-micron fibre taper,” CLEO/IQEC Europe (Munich, Germany June 2007), Poster IA-3-TUE.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The experimental setups used to investigate the nonlinear transmission through the TOF. (a) Self-modulation of transmission. (b) Control-probe modulation of transmission.

Fig. 2
Fig. 2

A plot showing the increase in the percentage of light that is transmitted through a TOF as a function of the input power. Transmission is normalized to the maximum transmission at high power levels.

Fig. 3
Fig. 3

A plot showing the increase in the transmission of a weak probe beam ( 1 μ W ; 780 nm ) as a function of the input power of a stronger counterpropagating control beam ( 770 nm ) . Transmission is normalized to the maximum transmission at high control-beam power levels. The stronger beam has been removed using a tunable wavelength filter as shown in Fig. 1b, and the input power of the probe beam remained constant.

Fig. 4
Fig. 4

Plots showing the transmission through the tapered fiber as a function of frequency detuning near the D 2 line of natural rubidium. These plots are normalized to the maximum value measured in each laser scan for comparison purposes. (a) No control beam, 0.95 μ W of probe beam at 780 nm . (b) No control beam, 5.0 μ W of probe beam at 780 nm . (c) With 49 μ W of control-beam power applied at a wavelength of 770 nm , and a probe beam with 8.0 nW of power at 780 nm . (d) A control beam with 49 μ W of power at 770 nm , and a probe beam with 1.1 μ W of power at 780 nm . The reduction in the depths of the resonant features in (b) and (d) are due to the saturation of the atomic transitions as described in the text.

Metrics