H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25, 2739-2750 (2007).

[CrossRef]

Z. L. Ran and Y. J. Rao, “A FBG sensor system with cascaded LPFGs and music algorithm for dynamic strain measurement,” Sens. Actuators, A 135, 415-419 (2007).

[CrossRef]

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260, 716-722 (2006).

[CrossRef]

R. Huang, Y. Zhou, H. Cai, R. Qu, and Z. Fang, “A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems,” Opt. Commun. 229, 197-201 (2004).

[CrossRef]

D. J. F. Cooper and P. W. E. Smith, “Limits in wavelength measurement of optical signals,” J. Opt. Soc. Am. B 21, 908-913 (2004).

[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).

[CrossRef]

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, “Superposition of chirped fibre Bragg gratings for third order dispersion compensation over 32 WDM channels,” Electron. Lett. 38, 1572-1573 (2002).

[CrossRef]

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350-351 (2001).

[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber gratings by layer-peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).

[CrossRef]

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, “Custom design of long chirped Bragg gratings: application to gain--flattening filter with incorporated dispersion compensation,” IEEE Photon. Technol. Lett. 12, 498-500 (2000).

[CrossRef]

R. Feced and M. N. Zervas, “Efficient inverse scattering algorithm for the design of grating-assisted codirectional mode couplers,” J. Opt. Soc. Am. A 17, 1573-1582 (2000).

[CrossRef]

R. Feced, M. N. Zervas, and M. Miguel, “An efficient inverse scattering algorithm for the design of nonuniform fibre Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115 (1999).

[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).

[CrossRef]

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodmulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).

[CrossRef]

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction image and diffraction plane pictures,” Optik (Jena) 35, 237-246 (1972).

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260, 716-722 (2006).

[CrossRef]

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260, 716-722 (2006).

[CrossRef]

R. Huang, Y. Zhou, H. Cai, R. Qu, and Z. Fang, “A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems,” Opt. Commun. 229, 197-201 (2004).

[CrossRef]

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, “Superposition of chirped fibre Bragg gratings for third order dispersion compensation over 32 WDM channels,” Electron. Lett. 38, 1572-1573 (2002).

[CrossRef]

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, “Custom design of long chirped Bragg gratings: application to gain--flattening filter with incorporated dispersion compensation,” IEEE Photon. Technol. Lett. 12, 498-500 (2000).

[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber gratings by layer-peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).

[CrossRef]

R. Huang, Y. Zhou, H. Cai, R. Qu, and Z. Fang, “A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems,” Opt. Commun. 229, 197-201 (2004).

[CrossRef]

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction image and diffraction plane pictures,” Optik (Jena) 35, 237-246 (1972).

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, “Custom design of long chirped Bragg gratings: application to gain--flattening filter with incorporated dispersion compensation,” IEEE Photon. Technol. Lett. 12, 498-500 (2000).

[CrossRef]

R. Huang, Y. Zhou, H. Cai, R. Qu, and Z. Fang, “A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems,” Opt. Commun. 229, 197-201 (2004).

[CrossRef]

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, “Custom design of long chirped Bragg gratings: application to gain--flattening filter with incorporated dispersion compensation,” IEEE Photon. Technol. Lett. 12, 498-500 (2000).

[CrossRef]

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350-351 (2001).

[CrossRef]

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350-351 (2001).

[CrossRef]

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350-351 (2001).

[CrossRef]

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, “Custom design of long chirped Bragg gratings: application to gain--flattening filter with incorporated dispersion compensation,” IEEE Photon. Technol. Lett. 12, 498-500 (2000).

[CrossRef]

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350-351 (2001).

[CrossRef]

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25, 2739-2750 (2007).

[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).

[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation,” J. Lightwave Technol. 21, 2074-2083 (2003).

[CrossRef]

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodmulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).

[CrossRef]

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, “Superposition of chirped fibre Bragg gratings for third order dispersion compensation over 32 WDM channels,” Electron. Lett. 38, 1572-1573 (2002).

[CrossRef]

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodmulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).

[CrossRef]

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodmulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).

[CrossRef]

R. Feced, M. N. Zervas, and M. Miguel, “An efficient inverse scattering algorithm for the design of nonuniform fibre Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115 (1999).

[CrossRef]

Y. Painchaud and M. Morin, “Iterative method for the design of arbitrary multi-channel fiber Bragg gratings,” in OSA Topical Meeting Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP2007) (Optical Society of America, 2007), paper BTuB1.

Y. Painchaud, M. Poulin, and M. Morin, “Grating superposition encoded into a phase mask for efficient fabrication of dispersion slope compensators,” in Proceedings of the European Conference on Optical Communications (ECOC) (2006), paper Th 4.2.7.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260, 716-722 (2006).

[CrossRef]

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, “Superposition of chirped fibre Bragg gratings for third order dispersion compensation over 32 WDM channels,” Electron. Lett. 38, 1572-1573 (2002).

[CrossRef]

Y. Painchaud, M. Poulin, and M. Morin, “Grating superposition encoded into a phase mask for efficient fabrication of dispersion slope compensators,” in Proceedings of the European Conference on Optical Communications (ECOC) (2006), paper Th 4.2.7.

Y. Painchaud and M. Morin, “Iterative method for the design of arbitrary multi-channel fiber Bragg gratings,” in OSA Topical Meeting Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP2007) (Optical Society of America, 2007), paper BTuB1.

Y. Painchaud, M. Poulin, and M. Morin, “Grating superposition encoded into a phase mask for efficient fabrication of dispersion slope compensators,” in Proceedings of the European Conference on Optical Communications (ECOC) (2006), paper Th 4.2.7.

R. Huang, Y. Zhou, H. Cai, R. Qu, and Z. Fang, “A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems,” Opt. Commun. 229, 197-201 (2004).

[CrossRef]

Z. L. Ran and Y. J. Rao, “A FBG sensor system with cascaded LPFGs and music algorithm for dynamic strain measurement,” Sens. Actuators, A 135, 415-419 (2007).

[CrossRef]

Z. L. Ran and Y. J. Rao, “A FBG sensor system with cascaded LPFGs and music algorithm for dynamic strain measurement,” Sens. Actuators, A 135, 415-419 (2007).

[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).

[CrossRef]

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25, 2739-2750 (2007).

[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).

[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation,” J. Lightwave Technol. 21, 2074-2083 (2003).

[CrossRef]

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction image and diffraction plane pictures,” Optik (Jena) 35, 237-246 (1972).

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25, 2739-2750 (2007).

[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).

[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation,” J. Lightwave Technol. 21, 2074-2083 (2003).

[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber gratings by layer-peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).

[CrossRef]

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260, 716-722 (2006).

[CrossRef]

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, “Superposition of chirped fibre Bragg gratings for third order dispersion compensation over 32 WDM channels,” Electron. Lett. 38, 1572-1573 (2002).

[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber gratings by layer-peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).

[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).

[CrossRef]

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, “Custom design of long chirped Bragg gratings: application to gain--flattening filter with incorporated dispersion compensation,” IEEE Photon. Technol. Lett. 12, 498-500 (2000).

[CrossRef]

R. Feced and M. N. Zervas, “Efficient inverse scattering algorithm for the design of grating-assisted codirectional mode couplers,” J. Opt. Soc. Am. A 17, 1573-1582 (2000).

[CrossRef]

R. Feced, M. N. Zervas, and M. Miguel, “An efficient inverse scattering algorithm for the design of nonuniform fibre Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115 (1999).

[CrossRef]

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260, 716-722 (2006).

[CrossRef]

R. Huang, Y. Zhou, H. Cai, R. Qu, and Z. Fang, “A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems,” Opt. Commun. 229, 197-201 (2004).

[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).

[CrossRef]

Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, “Superposition of chirped fibre Bragg gratings for third order dispersion compensation over 32 WDM channels,” Electron. Lett. 38, 1572-1573 (2002).

[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber gratings by layer-peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).

[CrossRef]

R. Feced, M. N. Zervas, and M. Miguel, “An efficient inverse scattering algorithm for the design of nonuniform fibre Bragg gratings,” IEEE J. Quantum Electron. 35, 1105-1115 (1999).

[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).

[CrossRef]

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, “Custom design of long chirped Bragg gratings: application to gain--flattening filter with incorporated dispersion compensation,” IEEE Photon. Technol. Lett. 12, 498-500 (2000).

[CrossRef]

S. M. Melle, K. Liu, and R. M. Measures, “A passive wavelength demodmulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).

[CrossRef]

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350-351 (2001).

[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation,” J. Lightwave Technol. 21, 2074-2083 (2003).

[CrossRef]

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightwave Technol. 25, 2739-2750 (2007).

[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).

[CrossRef]

R. Huang, Y. Zhou, H. Cai, R. Qu, and Z. Fang, “A fiber Bragg grating with triangular spectrum as wavelength readout in sensor systems,” Opt. Commun. 229, 197-201 (2004).

[CrossRef]

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260, 716-722 (2006).

[CrossRef]

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction image and diffraction plane pictures,” Optik (Jena) 35, 237-246 (1972).

Z. L. Ran and Y. J. Rao, “A FBG sensor system with cascaded LPFGs and music algorithm for dynamic strain measurement,” Sens. Actuators, A 135, 415-419 (2007).

[CrossRef]

Y. Painchaud and M. Morin, “Iterative method for the design of arbitrary multi-channel fiber Bragg gratings,” in OSA Topical Meeting Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP2007) (Optical Society of America, 2007), paper BTuB1.

Y. Painchaud, M. Poulin, and M. Morin, “Grating superposition encoded into a phase mask for efficient fabrication of dispersion slope compensators,” in Proceedings of the European Conference on Optical Communications (ECOC) (2006), paper Th 4.2.7.