Abstract

A systematic study on a generalized compensated bilayer structure is presented based on transformation optics. A compensated bilayer can be constructed through a general transformation plus a coordinate inversion based on a single layer in the electromagnetic (EM) space. Two outer boundaries of the obtained bilayer are mapped from the same surface. Such a bilayer has an optically zero volume (nihility) regardless of the material composition in the original single layer. This fact directly leads to the property of invariant scattering. A bilayer is also able to transfer the EM field from one side to the other with a scaling factor, which is determined by how the two side boundaries are mapped. For a properly chosen background, it is possible to achieve perfect optical imaging. Extensive numerical examples are given to demonstrate these identified properties and applications. Our study provides a more complete understanding of this class of transformation media by considering general geometries and arbitrary material properties.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  3. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110-112 (2009).
    [CrossRef]
  4. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
    [CrossRef]
  5. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” http://www.arXiv:0805.4778v2 [physics. optics], 2008.
  6. M. Yan, W. Yan, and M. Qiu, “Invisibility cloaking by coordinate transformation,” in Progress in Optics, Vol. 52, E.Wolf, ed. (Elsevier, 2008), Chap. 4.
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  8. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009).
    [CrossRef] [PubMed]
  9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009).
    [CrossRef]
  10. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photon. 3, 461-463 (2009).
    [CrossRef]
  11. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922-12928 (2009).
    [CrossRef] [PubMed]
  12. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
    [CrossRef] [PubMed]
  13. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Mater. 8, 639-642 (2009).
    [CrossRef]
  14. Z. C. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
    [CrossRef] [PubMed]
  15. H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
    [CrossRef] [PubMed]
  16. M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Appl. Phys. Lett. 99, 233901 (2007).
    [CrossRef]
  17. Y. Lai, H. Y. Chen, Z. Q. Wang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
    [CrossRef] [PubMed]
  18. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
    [CrossRef] [PubMed]
  19. H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
    [CrossRef]
  20. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
    [CrossRef] [PubMed]
  21. T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys. 10, 115038 (2008).
    [CrossRef]
  22. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43-45 (2008).
    [CrossRef]
  23. W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101 (2008).
    [CrossRef]
  24. M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
    [CrossRef]
  25. T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, “Superscatterer: Enhancement of scattering with complementary media,” Opt. Express 16, 18545-18550 (2008).
    [CrossRef] [PubMed]
  26. Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, L. X. Ran, and J. A. Kong, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” http://www.arXiv:0904.1463 [physics. optics], 2009.
  27. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
    [CrossRef] [PubMed]
  28. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  29. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
    [CrossRef] [PubMed]
  30. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
    [CrossRef] [PubMed]
  31. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
    [CrossRef] [PubMed]
  32. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345-6364 (2003).
    [CrossRef]
  33. A. Lakhtakia, “On perfect lenses and nihility,” Int. J. Infrared Millim. Waves 23, 339-343 (2002).
    [CrossRef]
  34. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  35. D. R. Smith and S. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  36. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express 11, 750-760 (2003).
    [CrossRef]

2009 (9)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009).
[CrossRef]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photon. 3, 461-463 (2009).
[CrossRef]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Mater. 8, 639-642 (2009).
[CrossRef]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110-112 (2009).
[CrossRef]

Y. Lai, H. Y. Chen, Z. Q. Wang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922-12928 (2009).
[CrossRef] [PubMed]

2008 (8)

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101 (2008).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[CrossRef]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43-45 (2008).
[CrossRef]

T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, “Superscatterer: Enhancement of scattering with complementary media,” Opt. Express 16, 18545-18550 (2008).
[CrossRef] [PubMed]

T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys. 10, 115038 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

2007 (5)

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[CrossRef] [PubMed]

Z. C. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Appl. Phys. Lett. 99, 233901 (2007).
[CrossRef]

2006 (4)

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

2003 (3)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345-6364 (2003).
[CrossRef]

D. R. Smith and S. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express 11, 750-760 (2003).
[CrossRef]

2002 (1)

A. Lakhtakia, “On perfect lenses and nihility,” Int. J. Infrared Millim. Waves 23, 339-343 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

Blair, J.

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photon. 3, 461-463 (2009).
[CrossRef]

Chan, C. T.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Wang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

Chen, H. S.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, L. X. Ran, and J. A. Kong, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” http://www.arXiv:0904.1463 [physics. optics], 2009.

Chen, H. Y.

Y. Lai, H. Y. Chen, Z. Q. Wang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, “Superscatterer: Enhancement of scattering with complementary media,” Opt. Express 16, 18545-18550 (2008).
[CrossRef] [PubMed]

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009).
[CrossRef] [PubMed]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009).
[CrossRef] [PubMed]

Cummer, S. A.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photon. 3, 461-463 (2009).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Greenleaf, A.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[CrossRef] [PubMed]

Han, D. Z.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43-45 (2008).
[CrossRef]

Kong, J. A.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, L. X. Ran, and J. A. Kong, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” http://www.arXiv:0904.1463 [physics. optics], 2009.

Kurylev, Y.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[CrossRef] [PubMed]

Lai, Y.

Y. Lai, H. Y. Chen, Z. Q. Wang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Lakhtakia, A.

A. Lakhtakia, “On perfect lenses and nihility,” Int. J. Infrared Millim. Waves 23, 339-343 (2002).
[CrossRef]

Lassas, M.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[CrossRef] [PubMed]

Lee, J. H.

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110-112 (2009).
[CrossRef]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Mater. 8, 639-642 (2009).
[CrossRef]

T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys. 10, 115038 (2008).
[CrossRef]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” http://www.arXiv:0805.4778v2 [physics. optics], 2008.

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009).
[CrossRef]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photon. 3, 461-463 (2009).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009).
[CrossRef] [PubMed]

Liu, Y. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

Liu, Z. W.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

Luo, X. D.

Luo, Y.

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, L. X. Ran, and J. A. Kong, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” http://www.arXiv:0904.1463 [physics. optics], 2009.

Ma, H. R.

Ma, Y. G.

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Mater. 8, 639-642 (2009).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Neff, C. W.

Z. C. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

Ng, J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Ong, C. K.

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Mater. 8, 639-642 (2009).
[CrossRef]

Park, W.

Pendry, J. B.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express 11, 750-760 (2003).
[CrossRef]

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345-6364 (2003).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[CrossRef]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” http://www.arXiv:0805.4778v2 [physics. optics], 2008.

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photon. 3, 461-463 (2009).
[CrossRef]

Qiu, M.

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101 (2008).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[CrossRef]

Z. C. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Appl. Phys. Lett. 99, 233901 (2007).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Invisibility cloaking by coordinate transformation,” in Progress in Optics, Vol. 52, E.Wolf, ed. (Elsevier, 2008), Chap. 4.

Rahm, M.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345-6364 (2003).
[CrossRef]

Ran, L. X.

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, L. X. Ran, and J. A. Kong, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” http://www.arXiv:0904.1463 [physics. optics], 2009.

Rhee, S. J.

Ruan, Z. C.

Z. C. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Appl. Phys. Lett. 99, 233901 (2007).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Schurig, D.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Schurig, S.

D. R. Smith and S. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Shalaev, V. M.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43-45 (2008).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

D. R. Smith and S. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

Smolyaninova, V. N.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

Stacy, A. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Summers, C. J.

Sun, C.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

Tamma, V. A.

Tyc, T.

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Mater. 8, 639-642 (2009).
[CrossRef]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110-112 (2009).
[CrossRef]

T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys. 10, 115038 (2008).
[CrossRef]

Uhlmann, G.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[CrossRef] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Wang, Y.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

Wang, Z. Q.

Y. Lai, H. Y. Chen, Z. Q. Wang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Wu, B. I.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, L. X. Ran, and J. A. Kong, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” http://www.arXiv:0904.1463 [physics. optics], 2009.

Wu, Q.

Xiao, J. J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Yan, M.

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101 (2008).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[CrossRef]

Z. C. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Appl. Phys. Lett. 99, 233901 (2007).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Invisibility cloaking by coordinate transformation,” in Progress in Optics, Vol. 52, E.Wolf, ed. (Elsevier, 2008), Chap. 4.

Yan, W.

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[CrossRef]

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101 (2008).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Invisibility cloaking by coordinate transformation,” in Progress in Optics, Vol. 52, E.Wolf, ed. (Elsevier, 2008), Chap. 4.

Yang, T.

Yao, J.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Zhang, B. L.

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Zhang, J. J.

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, L. X. Ran, and J. A. Kong, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” http://www.arXiv:0904.1463 [physics. optics], 2009.

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

M. Yan, Z. C. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Appl. Phys. Lett. 99, 233901 (2007).
[CrossRef]

H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

A. Lakhtakia, “On perfect lenses and nihility,” Int. J. Infrared Millim. Waves 23, 339-343 (2002).
[CrossRef]

J. Phys.: Condens. Matter (1)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys.: Condens. Matter 15, 6345-6364 (2003).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Nature Mater. (2)

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nature Mater. 8, 639-642 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571 (2009).
[CrossRef]

Nature Photon. (1)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photon. 3, 461-463 (2009).
[CrossRef]

New J. Phys. (2)

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[CrossRef]

T. Tyc and U. Leonhardt, “Transmutation of singularities in optical instruments,” New J. Phys. 10, 115038 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101 (2008).
[CrossRef]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[CrossRef]

Phys. Rev. Lett. (9)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith and S. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Wang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[CrossRef] [PubMed]

Z. C. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

H. S. Chen, B. I. Wu, B. L. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Y. Lai, H. Y. Chen, Z. Q. Wang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

Science (8)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369 (2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110-112 (2009).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004).
[CrossRef] [PubMed]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef] [PubMed]

Other (3)

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” http://www.arXiv:0805.4778v2 [physics. optics], 2008.

M. Yan, W. Yan, and M. Qiu, “Invisibility cloaking by coordinate transformation,” in Progress in Optics, Vol. 52, E.Wolf, ed. (Elsevier, 2008), Chap. 4.

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, L. X. Ran, and J. A. Kong, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” http://www.arXiv:0904.1463 [physics. optics], 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illustation of a bilayer structure. (a) Slab-shaped bilayer of type A, (b) cylindrical-shaped bilayer of type A, (c) a spherical-shaped bilayer of type B. The bilayer structure of type A is surrounded by two discontinous regions: region I and region II. The bilayer structure of type B is surrounded by a continous region.

Fig. 2
Fig. 2

(a) Illustration of the construction of a cylindrical-shape compensated bilayer of type A by folding a single cylindrical shell in the radial direction. (b) Illustration of the construction of a compensated bilayer of type B by folding a half cylinder in one Cartesian axis direction.

Fig. 3
Fig. 3

For the bilayer structure of type A, (a) an observer in region I perceives the fields as if the fields were from region II connected directly with region I. (b) An observer in region II perceives the fields as if the fields were from region I connected directly with region II.

Fig. 4
Fig. 4

By inducing an extra boundary S 4 , the region outside the bilayer structure of type B can be separated into regions I and II. (a) An observer in region I perceives the fields as if the fields were from region II connected directly with region I. (b) An observer in region II perceives the fields as if the fields were from region I connected directly with region II.

Fig. 5
Fig. 5

Material parameters of a cylindrical compensated bilayer composed of indefinite media. (a) Material parameters of layer 1, (b) material parameters of layer 2.

Fig. 6
Fig. 6

Electric field distribution for a line current source located at ( r = 1.55 λ , θ = π) interacting with a cylindrical compensated bilayer composed of indefinite media. The compensated bilayer lens has the same parameters as in Fig. 5 except that material parameters smaller than 1 are all given a small loss of 0.006 i . Region II has material parameters of ε II = 9 and μ II = 1 . The bilayer is outlined by solid lines. The source and the image are denoted by an asterisk ∗.

Fig. 7
Fig. 7

Electric field distribution for a plane wave from left infinity interacting with (a) the bilayer as in Fig. 6, (b) the bilayer having the same geometrical parameters as in Fig. 6 but different material parameters ε 1 = μ 1 = 1 and ε 2 = μ 2 = diag [ ( r 2 λ ) r , r ( r 2 λ ) , ( r 2 λ ) r ] . Regions I and II are free space. The bilayer is outlined by solid lines.

Fig. 8
Fig. 8

Electric field distribution for a line current source located at the origin interacting with (a) a PEC cylinder embedded in region I, (b) a PEC cylinder in the background with ε b = 9 and μ b = 1 . The compensated bilayer has the same parameters as in Fig. 6. The PEC cylinder in (a) located at ( r = 3 λ , θ = π) has a radius of 1.5λ. The PEC cylinder in (b) located at at ( r = λ , θ = π) has a radius of 0.5λ. The bilayer and the PEC cylinder are outlined by solid lines.

Fig. 9
Fig. 9

(a) Illustration of a square-shaped compensated bilayer of type B. (b) Electric field distribution for a line current source J ̂ 1 = a δ ( x 1 0.3 λ ) δ ( x 2 0.3 λ ) x ̂ 3 interacting with the square-shaped compensated bilayer as in (a). The compensated bilayer has material parameters ε 1 = μ 1 = 1 , and ε 2 = μ 2 = 1 + 0.006 i . Region II has material parameters ε II = μ II = [ 5 , 3 , 0 ; 3 , 2 , 0 ; 0 , 0 , 2 ] for the half part of x 2 > 0 and ε II = μ II = [ 5 , 3 , 0 ; 3 , 2 , 0 ; 0 , 0 , 2 ] for the half part of x 2 < 0 . Region I is free space. The bilayer and region II are outlined by solid lines; the source and the image are denoted by ∗.

Fig. 10
Fig. 10

Electric field distribution for a plane wave from left infinity interacting with (a) a cylindrical bilayer of type B, which has a radius of 0.5λ, and material parameters as ε 1 = 4 and μ 1 = 1 and ε 2 = 4 + 0.006 i and μ 2 = 1 + 0.006 i , (b) a cylindrical bilayer of type B, which has the same geometry as in (a) but different material parameters as ε 1 = 3 and μ 1 = 3 and ε 2 = 3 + 0.006 i and μ 2 = 3 + 0.006 i . The region outside the bilayer is free space. The bilayer is outlined by solid lines.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

( D i ) , i = 0 , ( B i ) , i = 0
[ i j k ] E k , j = B i t , [ i j k ] H k , j = D i t ,
D i = ε i j E j , B i = μ i j H j ,
g i j = Λ i i g i j Λ j j ,
Λ i i = [ x 1 x 1 x 1 x 2 x 1 x 3 x 2 x 1 x 2 x 2 x 2 x 3 x 3 x 1 x 3 x 2 x 3 x 3 ] .
( Λ D i ) , i = 0 , ( Λ B i ) , i = 0 ,
[ i j k ] E k , j = Λ B i t , [ i j k ] H k , j = Λ D i t + Λ j i ,
E i = Λ i i E i , H i = Λ i i H i ,
D i = Λ i i D i , B i = Λ i i B i ,
D i = Λ D i , B i = Λ B i .
D i = ε i j E i , B i = μ i j H i ,
ε i j = Λ Λ i i ε i j Λ j j , μ i j = Λ Λ i i μ i j Λ j j .
ε 2 = h ( r ) r d h d r diag [ 1 d h d r , r h ( r ) , 1 ] ε 1 diag [ 1 d h d r , r h ( r ) , 1 ] ,
μ 2 = h ( r ) r d h d r diag [ 1 d h d r , r h ( r ) , 1 ] μ 1 diag [ 1 d h d r , r h ( r ) , 1 ] ,
ε 2 = h x 1 diag [ 1 h x 1 , 1 , 1 ] ε 1 diag [ 1 , 1 , 1 h x 1 ] ,
μ 2 = h x 1 diag [ 1 , 1 , 1 h x 1 ] μ 1 diag [ 1 h x 1 1 , 1 ] ,
[ E n E t 1 E t 2 ] S 1 = [ E n E t 1 E t 2 ] S 1 .
| E i | S 2 = Λ i i [ n i , t 1 i , t 2 i ] [ E n E t 1 E t 2 ] S 1 ,
| E i | S 1 = [ n i , t 1 i , t 2 i ] [ E n E t 1 E t 2 ] S 1 .
[ n i t 1 i t 2 i ] | E i | S 2 = [ n i n i n i t 1 i n i t 2 i 0 1 0 0 0 1 ] [ E n E t 1 E t 2 ] S 1 .
[ E n E t 1 E t 2 ] S 2 = [ n i n i N n i t 1 i N n i t 2 i N 0 1 T 1 0 0 0 1 T 2 ] [ E n E t 1 E t 2 ] S 1 ,
| E t 1 | S 1 = | T 1 E t 1 | S 2 , | E t 2 | S 1 = | T 2 E t 2 | S 2 .
| E z | S 1 = | E z | S 2 , | E θ | S 1 = b a | E θ | S 2 ,
| H z | S 1 = | E z | S 2 , | H θ | S 1 = b a | E θ | S 2 .
| E t 1 II | S 1 = | 1 T 1 E t 1 II | S 2 , | E t 2 II | S 1 = | 1 T 2 E t 2 II | S 2 .
| E t 1 II | S 1 = | E t 1 I | S 1 , | E t 2 II | S 1 = | E t 2 I | S 1 .
ε 2 = diag [ h ( r ) r h r ε 1 r , r h r h ( r ) ε 1 θ , h ( r ) h r r ε 1 z ] ,
μ 2 = diag [ h ( r ) r h r μ 1 r , r h r h ( r ) μ 1 θ , h ( r ) h r r μ 1 z ] .
ε II = diag [ 1 , 1 , a b ] ε I diag [ 1 , 1 , a b ] ,
μ II = diag [ 1 , 1 , a b ] μ I diag [ 1 , 1 , a b ] .
ε 2 r = μ 2 r = r ( c a ) + c ( a b ) r ( c a ) ,
ε 2 θ = μ 2 θ = r ( c a ) r ( c a ) + c ( a b ) ,
ε 2 z = μ 2 z = r ( c a ) 2 + c ( a b ) ( c a ) r ( c b ) 2 .

Metrics