Abstract

In order to more clearly observe the bianisotropic effects due to fabrication-induced structural asymmetries in negative-index metamaterials based on a fishnet structure, it is necessary to measure the optical properties with symmetric substrate and superstrate bounding layers. This is accomplished in this report using an index-matching fluid and identical substrate and superstrate glass materials.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14, 6778-6787 (2006).
    [CrossRef] [PubMed]
  2. Z. Ku, and S. R. J. Brueck, “Comparison of negative refractive index materials with circular, elliptical, and rectangular holes,” Opt. Express 15, 4515-4522 (2007).
    [CrossRef] [PubMed]
  3. G. Dolling, M. Wegener, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53-55 (2007).
    [CrossRef]
  4. S. R. J. Brueck, “Optical and interferometric lithography--nanotechnology enablers,” Proc. IEEE 93, 1704-1721 (2005).
    [CrossRef]
  5. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
    [CrossRef] [PubMed]
  6. W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
    [CrossRef]
  7. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
    [CrossRef]
  8. Z. Ku and S. R. J. Brueck, “Experimental demonstration of sidewall-angle-induced bianisotropy in multiple-layer negative-index metamaterials,” Appl. Phys. Lett. 94, 153107 (2009).
    [CrossRef]
  9. G. Dolling, M. Wegener, and S. Linden, “Realization of three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551-553 (2007).
    [CrossRef] [PubMed]
  10. E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
    [CrossRef]
  11. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922-4930 (2005).
    [CrossRef] [PubMed]
  12. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  13. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
    [CrossRef]
  14. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
    [CrossRef]
  15. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
    [CrossRef]
  16. M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, “Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation,” Opt. Lett. 34, 19-21 (2009).
    [CrossRef]
  17. Z. Ku, J. Zhang, and S. R. J. Brueck, “Bianisotropy of multiple-layer fishnet negative-index metamaterials due to angled sidewalls,” Opt. Express 17, 6782-6789 (2009).
    [CrossRef] [PubMed]
  18. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
    [CrossRef]
  19. CST Studio Suite 2006B, ⟨www.cst.com⟩.
  20. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099-1120 (1983).
    [CrossRef] [PubMed]
  21. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  22. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  23. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
    [CrossRef]

2009 (4)

Z. Ku and S. R. J. Brueck, “Experimental demonstration of sidewall-angle-induced bianisotropy in multiple-layer negative-index metamaterials,” Appl. Phys. Lett. 94, 153107 (2009).
[CrossRef]

M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, “Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation,” Opt. Lett. 34, 19-21 (2009).
[CrossRef]

Z. Ku, J. Zhang, and S. R. J. Brueck, “Bianisotropy of multiple-layer fishnet negative-index metamaterials due to angled sidewalls,” Opt. Express 17, 6782-6789 (2009).
[CrossRef] [PubMed]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[CrossRef]

2008 (4)

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
[CrossRef]

2007 (5)

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

Z. Ku, and S. R. J. Brueck, “Comparison of negative refractive index materials with circular, elliptical, and rectangular holes,” Opt. Express 15, 4515-4522 (2007).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53-55 (2007).
[CrossRef]

G. Dolling, M. Wegener, and S. Linden, “Realization of three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551-553 (2007).
[CrossRef] [PubMed]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

2006 (1)

2005 (5)

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N.-C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922-4930 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[CrossRef]

S. R. J. Brueck, “Optical and interferometric lithography--nanotechnology enablers,” Proc. IEEE 93, 1704-1721 (2005).
[CrossRef]

2002 (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1983 (1)

Alexander, R. W.

Aydin, K.

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Boltasseva, A.

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
[CrossRef]

Bratkovsky, A. M.

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

Brueck, S. R. J.

Cai, W.

Chen, X.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[CrossRef]

Chettiar, U. K.

Dolling, G.

Drachev, V. P.

Fan, W.

Fang, N. X.

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

Fu, L.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

Grzegorczyk, T. M.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Kaiser, S.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

Kildishev, A. V.

Kim, E.

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

Kong, J. A.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[CrossRef]

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Kriegler, C. E.

Ku, Z.

Li, Z.

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[CrossRef]

Linden, S.

Liu, N.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

Liu, Y.

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

Long, L. L.

Malloy, K. J.

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Ordal, M. A.

Osgood, R. M.

Ozbay, E.

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[CrossRef]

Panoiu, N. C.

Panoiu, N.-C.

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Ponizovskaya, E.

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

Rill, M. S.

M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, “Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation,” Opt. Lett. 34, 19-21 (2009).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Sarychev, A. K.

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Schweizer, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

Shalaev, V. M.

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

Shen, Y. R.

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

Smith, D. R.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Sun, C.

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

Thiel, M.

M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, “Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation,” Opt. Lett. 34, 19-21 (2009).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

von Freymann, G.

M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, “Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation,” Opt. Lett. 34, 19-21 (2009).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Wang, S. Y.

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

Ward, C. A.

Wegener, M.

Williams, R. S.

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

Wu, B.-I.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[CrossRef]

Wu, W.

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Yu, Z.

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

Yuan, H.-K.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Zhang, J.

Zhang, S.

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Z. Ku and S. R. J. Brueck, “Experimental demonstration of sidewall-angle-induced bianisotropy in multiple-layer negative-index metamaterials,” Appl. Phys. Lett. 94, 153107 (2009).
[CrossRef]

W. Wu, Z. Yu, S. Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, “Midinfrared metamaterials fabricated by nanoimprint lithography,” Appl. Phys. Lett. 90, 063107 (2007).
[CrossRef]

E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007).
[CrossRef]

Metamaterials (1)

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379 (2008).
[CrossRef] [PubMed]

Nature Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Phys. Rev. E (3)

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[CrossRef]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Proc. IEEE (1)

S. R. J. Brueck, “Optical and interferometric lithography--nanotechnology enablers,” Proc. IEEE 93, 1704-1721 (2005).
[CrossRef]

Other (1)

CST Studio Suite 2006B, ⟨www.cst.com⟩.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of sidewall-angle formation mechanism. (a) Illustration of tendency for tops of polymer posts to be larger in e-beam evaporation of constituent materials. (b) Final structure with sidewall angle by liftoff processing. (c) Dimensions of two-functional-layered superstrate-elliptical NIM: p = 810 nm , 2 a = 536 nm , 2 b = 352 nm , and θ ( sidewall angle ) = 13 ° . The polarization direction is described (E, H, and k denote electric, magnetic field, and propagation direction, respectively).

Fig. 2
Fig. 2

Scanning electron microscope images of (a) a periodic elliptical hole PR pattern defined by interferometric lithography. (b), (c) BARC posts etched by anisotropic O 2 plasma RIE using Cr as the selective etching mask. (d) 25 - nm -thick Au deposition after (b), (c).

Fig. 3
Fig. 3

Measured/simulated transmission, reflectance (from superstrate and substrate), and absorption (1-T-R) for superstrate-elliptical negative-index metamaterials, depending on the propagation direction, with the polarization shown in Fig. 1c. Shaded areas represent wavelength regions of negative refractive index from simulation (see below). Insets display SEM images with one- to three-functional-layered eNIMs.

Fig. 4
Fig. 4

n , ε , μ , ξ , necessary condition ( ε μ + μ ε < 0 ) , and sufficient condition ( ε , μ < 0 ) for negative refractive index ( n < 0 ) for one- to three-functional-layered s-eNIMs with sidewall angles (4°, 13°, 22°) are plotted. ξ has been multiplied by 10 for clarity.

Fig. 5
Fig. 5

(a) Magnitude of y component of current density ( | J y | ) ; (b) x component of magnetic field ( | H x | ) ; and (c) z component of electric field ( | E z | ) at a frequency of min { Re [ μ eff ] } for one-functional-layer s-eNIM with sidewall angles (0°, 22°) are plotted along lines at the edge of cut-wire structure ( x = 405 nm ) . (d) | J y | along the lines in edge of thin-metal wire structure ( y = 405 nm ) . The values of | J y | , | H x | , and | E z | have been divided by 10 12 [ A m 2 ] , 10 5 [ A m ] , and 10 8 [ V m ] , respectively.

Fig. 6
Fig. 6

(a) Magnitude of y component of current density ( | J y | ) ; (b) x component of magnetic field ( | H x | ) ; and (c) z component of electric field ( | E z | ) at a frequency of min { Re [ μ eff ] } for two-functional-layered s-eNIM with sidewall angles (0°, 22°) are plotted along lines at the edge of cut-wire structure ( x = 405 nm ) . (d) | J y | along the lines in edge of thin-metal wires structure ( y = 405 nm ) . The values of | J y | , | H x | , and | E z | have been divided by 10 12 [ A m 2 ] , 10 5 [ A m ] , and 10 8 [ V m ] , respectively.

Metrics