Abstract

Dichroic Er3+:Au-antimony glass nanocomposites are synthesized in a new reducing glass (dielectric) matrix (mol%) K2OB2O3Sb2O3 (KBS) by a single-step melt-quench technique involving selective thermochemical reduction principle. Transmission electron microscopic images reveal hexagonal Auo nanoparticles having major axes about 923nm. Dichroic behavior arises due to hexagonal Auo nanoparticles of aspect ratio 1.2–1.3. Auo nanoparticles of concentration of 0.03wt% (4.1×1018  atomscm3) drastically enhances the intensity (2–5 folds) of both 536 (S324I1524, green) and 645 (F924I1524, red) nm emission bands of Er3+. Local field enhancement induced by Auo surface plasmon resonance (SPR) and energy transfer from fluorescent AuoEr3+ ions are found to be responsible for enhancement while, at very high Au concentration, energy transfer from Er3+Auo and optical reabsorption due to Auo SPR result in quenching.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yang, S. Xu, L. Hu, and Z. Jiang, “Thermal analysis and optical properties of Yb3+/Er3+-codoped oxyfluoride germanate glasses,” J. Opt. Soc. Am. B 21, 951-957 (2004).
    [CrossRef]
  2. R. Balda, A. J. Garcia-Adeva, J. Fernández, and J. M. Fdez-Navarro, “Infrared-to-visible upconversion of Er3+ ions in GeO2-PbO-Nb2O5 glasses,” J. Opt. Soc. Am. B 21, 744-752 (2004).
    [CrossRef]
  3. L. R. P. Kassab, M. E. Fukumoto, and L. Gomes, “Energy transfer in PbO-Bi2O3-Ga2O3 glasses codoped with Yb3+ and Er3+,” J. Opt. Soc. Am. B 22, 1255-1259 (2005).
    [CrossRef]
  4. L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. de A Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys. 102, 103515 (2007).
    [CrossRef]
  5. L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009).
    [CrossRef]
  6. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
    [CrossRef]
  7. C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12, 121-129 (2002).
    [CrossRef]
  8. J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
    [CrossRef]
  9. H. Hofmeister, W. -G. Drost, and A. Berger, “Oriented prolate silver particles in glass-characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
    [CrossRef]
  10. P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
    [CrossRef]
  11. W. Vogel, Glass Chemistry (Springer-Verlag, 1992).
  12. T. Som and B. Karmakar, “Efficient green and red fluorescence upconversion in erbium-doped new low-phonon antimony glasses,” Opt. Mater. 31, 609-618 (2009).
    [CrossRef]
  13. CRC Handbook of Chemistry and Physics, 75th ed., D.R.Lide, ed. (CRC Press, 1975), pp. 8-34.
  14. B. D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, 1978) p. 102.
  15. W. Casei, “Optically anisotropic metal-polymer nanocomposites,” in Metal-Polymer Nanocomposites, L.Nicolais and G.Carotenuto, eds. (Wiley, 2005).
  16. Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters,” Adv. Mater. 11, 223-227 (1999).
    [CrossRef]
  17. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aqua ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1968).
    [CrossRef]
  18. F. Gonella and P. Mazzoldi, “Metal nanocluster composite glasses,” in Handbook of Nanostructured Materials and Nanotechnology, Vol. 4, H.S.Nalwa, ed. (Academic, 2000).
    [CrossRef]
  19. K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
    [CrossRef]
  20. T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105, 3441-3452 (2001).
    [CrossRef]
  21. J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions II,” Philos. Trans. Roy. Soc. 205, 237-242 (1906).
    [CrossRef]
  22. H. Scholze, Glass: Nature, Structure, and Properties (Springer-Verlag, 1991).
  23. H. Liao, W. Wen, and G. K. Wong, “Photoluminescence from Au nanoparticles embedded in Au:oxide composite films,” J. Opt. Soc. Am. B 23, 2518-2521 (2006).
    [CrossRef]
  24. K. Terashima, T. Hashimoto, T. Uchino, S. -H. Kim, and T. Yoko, “Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses,” J. Ceram. Soc. Jpn. 104, 1008-1014 (1996).
    [CrossRef]
  25. J. Zhu, K. Zhu, and L. Chen, “Influence of gold nanoparticles on the upconversion fluorescence in Sm3+,” J. Non-Cryst. Solids 352, 150-154 (2006).
    [CrossRef]
  26. H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. B 107, 9161-9164 (2003).
    [CrossRef]

2009 (2)

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009).
[CrossRef]

T. Som and B. Karmakar, “Efficient green and red fluorescence upconversion in erbium-doped new low-phonon antimony glasses,” Opt. Mater. 31, 609-618 (2009).
[CrossRef]

2008 (2)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
[CrossRef]

2007 (1)

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. de A Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys. 102, 103515 (2007).
[CrossRef]

2006 (3)

H. Liao, W. Wen, and G. K. Wong, “Photoluminescence from Au nanoparticles embedded in Au:oxide composite films,” J. Opt. Soc. Am. B 23, 2518-2521 (2006).
[CrossRef]

J. Zhu, K. Zhu, and L. Chen, “Influence of gold nanoparticles on the upconversion fluorescence in Sm3+,” J. Non-Cryst. Solids 352, 150-154 (2006).
[CrossRef]

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

2005 (1)

2004 (2)

2003 (2)

H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. B 107, 9161-9164 (2003).
[CrossRef]

K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

2002 (1)

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12, 121-129 (2002).
[CrossRef]

2001 (1)

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105, 3441-3452 (2001).
[CrossRef]

1999 (2)

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters,” Adv. Mater. 11, 223-227 (1999).
[CrossRef]

H. Hofmeister, W. -G. Drost, and A. Berger, “Oriented prolate silver particles in glass-characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

1996 (1)

K. Terashima, T. Hashimoto, T. Uchino, S. -H. Kim, and T. Yoko, “Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses,” J. Ceram. Soc. Jpn. 104, 1008-1014 (1996).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aqua ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

1906 (1)

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions II,” Philos. Trans. Roy. Soc. 205, 237-242 (1906).
[CrossRef]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

Balda, R.

Bastiaansen, C.

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters,” Adv. Mater. 11, 223-227 (1999).
[CrossRef]

Berger, A.

H. Hofmeister, W. -G. Drost, and A. Berger, “Oriented prolate silver particles in glass-characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

Bomfim, F. A.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009).
[CrossRef]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

Calabi, F.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aqua ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Casei, W.

W. Casei, “Optically anisotropic metal-polymer nanocomposites,” in Metal-Polymer Nanocomposites, L.Nicolais and G.Carotenuto, eds. (Wiley, 2005).

Caseri, W.

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters,” Adv. Mater. 11, 223-227 (1999).
[CrossRef]

Chen, L.

J. Zhu, K. Zhu, and L. Chen, “Influence of gold nanoparticles on the upconversion fluorescence in Sm3+,” J. Non-Cryst. Solids 352, 150-154 (2006).
[CrossRef]

Cingolani, R.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Cullity, B. D.

B. D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, 1978) p. 102.

da Silva, D. M.

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. de A Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys. 102, 103515 (2007).
[CrossRef]

de A Pinto, R.

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. de A Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys. 102, 103515 (2007).
[CrossRef]

de Araújo, C. B.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009).
[CrossRef]

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. de A Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys. 102, 103515 (2007).
[CrossRef]

De Vittorio, M.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Deki, S.

H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. B 107, 9161-9164 (2003).
[CrossRef]

Della Sala, F.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Della Torre, A.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Dirix, Y.

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters,” Adv. Mater. 11, 223-227 (1999).
[CrossRef]

Dong, W.

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
[CrossRef]

Drost, W. -G.

H. Hofmeister, W. -G. Drost, and A. Berger, “Oriented prolate silver particles in glass-characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

Fdez-Navarro, J. M.

Fernández, J.

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aqua ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Fukumoto, M. E.

Garcia-Adeva, A. J.

Geddes, C. D.

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12, 121-129 (2002).
[CrossRef]

Gomes, L.

Gonella, F.

F. Gonella and P. Mazzoldi, “Metal nanocluster composite glasses,” in Handbook of Nanostructured Materials and Nanotechnology, Vol. 4, H.S.Nalwa, ed. (Academic, 2000).
[CrossRef]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

Hashimoto, T.

K. Terashima, T. Hashimoto, T. Uchino, S. -H. Kim, and T. Yoko, “Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses,” J. Ceram. Soc. Jpn. 104, 1008-1014 (1996).
[CrossRef]

Hofmeister, H.

H. Hofmeister, W. -G. Drost, and A. Berger, “Oriented prolate silver particles in glass-characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

Hu, L.

Jiang, L.

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
[CrossRef]

Jiang, Z.

Karmakar, B.

T. Som and B. Karmakar, “Efficient green and red fluorescence upconversion in erbium-doped new low-phonon antimony glasses,” Opt. Mater. 31, 609-618 (2009).
[CrossRef]

Kassab, L. R. P.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009).
[CrossRef]

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. de A Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys. 102, 103515 (2007).
[CrossRef]

L. R. P. Kassab, M. E. Fukumoto, and L. Gomes, “Energy transfer in PbO-Bi2O3-Ga2O3 glasses codoped with Yb3+ and Er3+,” J. Opt. Soc. Am. B 22, 1255-1259 (2005).
[CrossRef]

Kim, S. -H.

K. Terashima, T. Hashimoto, T. Uchino, S. -H. Kim, and T. Yoko, “Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses,” J. Ceram. Soc. Jpn. 104, 1008-1014 (1996).
[CrossRef]

Kobayashi, R. A.

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. de A Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys. 102, 103515 (2007).
[CrossRef]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

Lakowicz, J. R.

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12, 121-129 (2002).
[CrossRef]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

Li, J.

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
[CrossRef]

Liao, H.

Liz-Marzán, L. M.

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105, 3441-3452 (2001).
[CrossRef]

Manna, L.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Martinelli, J. R.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009).
[CrossRef]

Martiradonna, L.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions II,” Philos. Trans. Roy. Soc. 205, 237-242 (1906).
[CrossRef]

Mazzoldi, P.

F. Gonella and P. Mazzoldi, “Metal nanocluster composite glasses,” in Handbook of Nanostructured Materials and Nanotechnology, Vol. 4, H.S.Nalwa, ed. (Academic, 2000).
[CrossRef]

Mock, J. J.

K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Mulvaney, P.

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105, 3441-3452 (2001).
[CrossRef]

Nabika, H.

H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. B 107, 9161-9164 (2003).
[CrossRef]

Neto, J. J.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009).
[CrossRef]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

Pompa, P. P.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Qiao, L.

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aqua ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Rinaldi, R.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Scholze, H.

H. Scholze, Glass: Nature, Structure, and Properties (Springer-Verlag, 1991).

Schultz, S.

K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Sheng, J.

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
[CrossRef]

Smith, D. R.

K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Smith, P.

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters,” Adv. Mater. 11, 223-227 (1999).
[CrossRef]

Som, T.

T. Som and B. Karmakar, “Efficient green and red fluorescence upconversion in erbium-doped new low-phonon antimony glasses,” Opt. Mater. 31, 609-618 (2009).
[CrossRef]

Su, K. -H.

K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Terashima, K.

K. Terashima, T. Hashimoto, T. Uchino, S. -H. Kim, and T. Yoko, “Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses,” J. Ceram. Soc. Jpn. 104, 1008-1014 (1996).
[CrossRef]

Uchino, T.

K. Terashima, T. Hashimoto, T. Uchino, S. -H. Kim, and T. Yoko, “Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses,” J. Ceram. Soc. Jpn. 104, 1008-1014 (1996).
[CrossRef]

Ung, T.

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105, 3441-3452 (2001).
[CrossRef]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

Vogel, W.

W. Vogel, Glass Chemistry (Springer-Verlag, 1992).

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

Wei, Q. -H.

K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Wen, W.

Wetter, N. U.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009).
[CrossRef]

Wong, G. K.

Xu, S.

Yang, Z.

Yoko, T.

K. Terashima, T. Hashimoto, T. Uchino, S. -H. Kim, and T. Yoko, “Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses,” J. Ceram. Soc. Jpn. 104, 1008-1014 (1996).
[CrossRef]

Zhang, J.

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
[CrossRef]

Zhang, X.

K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Zheng, J.

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
[CrossRef]

Zhu, J.

J. Zhu, K. Zhu, and L. Chen, “Influence of gold nanoparticles on the upconversion fluorescence in Sm3+,” J. Non-Cryst. Solids 352, 150-154 (2006).
[CrossRef]

Zhu, K.

J. Zhu, K. Zhu, and L. Chen, “Influence of gold nanoparticles on the upconversion fluorescence in Sm3+,” J. Non-Cryst. Solids 352, 150-154 (2006).
[CrossRef]

ACS Nano (1)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707-718 (2008).
[CrossRef]

Adv. Mater. (1)

Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters,” Adv. Mater. 11, 223-227 (1999).
[CrossRef]

Appl. Phys. B (1)

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles,” Appl. Phys. B 94, 239-242 (2009).
[CrossRef]

J. Appl. Phys. (1)

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. de A Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys. 102, 103515 (2007).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

K. Terashima, T. Hashimoto, T. Uchino, S. -H. Kim, and T. Yoko, “Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses,” J. Ceram. Soc. Jpn. 104, 1008-1014 (1996).
[CrossRef]

J. Chem. Phys. (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aqua ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

J. Cryst. Growth (1)

J. Zhang, W. Dong, J. Sheng, J. Zheng, J. Li, L. Qiao, and L. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310, 234-239 (2008).
[CrossRef]

J. Fluoresc. (1)

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12, 121-129 (2002).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Zhu, K. Zhu, and L. Chen, “Influence of gold nanoparticles on the upconversion fluorescence in Sm3+,” J. Non-Cryst. Solids 352, 150-154 (2006).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. B (2)

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105, 3441-3452 (2001).
[CrossRef]

H. Nabika and S. Deki, “Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase,” J. Phys. Chem. B 107, 9161-9164 (2003).
[CrossRef]

Nano Lett. (1)

K. -H. Su, Q. -H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Nanostruct. Mater. (1)

H. Hofmeister, W. -G. Drost, and A. Berger, “Oriented prolate silver particles in glass-characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

Nat. Nanotechnol. (1)

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126-130 (2006).
[CrossRef]

Opt. Mater. (1)

T. Som and B. Karmakar, “Efficient green and red fluorescence upconversion in erbium-doped new low-phonon antimony glasses,” Opt. Mater. 31, 609-618 (2009).
[CrossRef]

Philos. Trans. Roy. Soc. (1)

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions II,” Philos. Trans. Roy. Soc. 205, 237-242 (1906).
[CrossRef]

Other (6)

H. Scholze, Glass: Nature, Structure, and Properties (Springer-Verlag, 1991).

CRC Handbook of Chemistry and Physics, 75th ed., D.R.Lide, ed. (CRC Press, 1975), pp. 8-34.

B. D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, 1978) p. 102.

W. Casei, “Optically anisotropic metal-polymer nanocomposites,” in Metal-Polymer Nanocomposites, L.Nicolais and G.Carotenuto, eds. (Wiley, 2005).

F. Gonella and P. Mazzoldi, “Metal nanocluster composite glasses,” in Handbook of Nanostructured Materials and Nanotechnology, Vol. 4, H.S.Nalwa, ed. (Academic, 2000).
[CrossRef]

W. Vogel, Glass Chemistry (Springer-Verlag, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dichroic behavior of Er 3 + :Au glass nanocomposite EG3: (a) blue in transmitted light and (b) brown in reflected light (For composition see Table 1).

Fig. 2
Fig. 2

XRD spectra of nanocomposites (a) E, (b) EG1, (c) EG2, and (d) EG3 (for composition see Table 1).

Fig. 3
Fig. 3

TEM images, (a) and (b), of the nanocomposite EG2 showing hexagonal Au NPs having an aspect ratio of 1.2–1.3, and (c) SAED of Au nanoparticles (for composition see Table 1).

Fig. 4
Fig. 4

UV-Vis-NIR absorption spectra of (a) E, (b) EG1, (c) EG2, and (d) EG3 in the range of 380 1100 nm showing the various transitions of Er 3 + arising from the ground-state term I 15 2 4 and the SPR positions of nano Au o NPs (thickness: 2 mm , for composition see Table 1).

Fig. 5
Fig. 5

Upconversion spectra of (a) E, (b) G, (c) EG1, (d) EG2, (e) EG3, and (f) base glass under excitation wavelength at λ ex = 798 nm (for composition see Table 1, and for amplification ratio see Table 2). The bases of the emission curves (c), (d), and (e) have been uplifted for better visibility.

Fig. 6
Fig. 6

Partial-energy-level diagram of Er 3 + ion in 15 K 2 O - 15 B 2 O 3 - 70 Sb 2 O 3 (mol %) glass showing upconversion fluorescence emissions at 536 and 645 nm through ground-state absorption (GSA), excited-state absorption (ESA), energy transfer (ET), and cooperative energy transfer (CET) between Er 3 + ions. Local field enhancement resonance (LFE, E x ) by surface plasmon resonance (SPR) of Au o NPs and energy transfer (ET) from fluorescent Au o NPs to Er 3 + ions in nanocomposites are also shown (R and NR represent the radiative and nonradiative transitions, respectively).

Fig. 7
Fig. 7

Plot of log intensity versus concentration of Au (wt%) for 536 and 645 nm emission bands. Maximum amplifications of the 536 nm green and 645 nm red emissions are found to be 1.8 and 5.2 folds, respectively, for composite EG2 (for compositions see Table 1, and for amplification ratio refer to Table 2). The lines are drawn to guide the eye.

Tables (2)

Tables Icon

Table 1 Composition and Some Physical Properties of the Nanocomposites

Tables Icon

Table 2 Some Calculated Properties and Variation of Relative Intensity of Upconversion Fluorescence Bands with Au Concentration in the Nanocomposites

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Sb 5 + Sb 3 + , E o = 0.649 V ,
Au 3 + Au o , E o = 1.498 V ,
Er 3 + Er o , E o = 2.331 V ,
Er 3 + Er 2 + , E o = 3.0 V .
D = 0.9 λ FWHM cos 2 θ ( peak ) ,
N ( ions or atoms cm 3 ) = ( A × N o × ρ ) M av ,
r i ( Å ) = ( 1 N ) 1 3 ,
E i ( D + d ) = E loc d .
η = E loc E i = ( D + d ) d .

Metrics