Abstract

A novel approach, to our knowledge, for the fabrication of metallic micro- and nanostructures based on femtosecond laser-induced transfer of metallic nanodroplets is developed. The controllable fabrication of high-quality spherical gold micro- and nanoparticles with radius of 100800nm is realized. In combination with the two-photon polymerization technique, this approach provides unique possibilities for the realization of plasmonic components and metamaterials. Polymer woodpile structures filled with gold nanoparticles are demonstrated. Scattering of surface plasmon polaritons on an individual spherical gold nanoparticle fabricated by the proposed method is investigated. The obtained results are supported by a numerical modeling using the Green’s tensor approach.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
    [CrossRef]
  2. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806-3819 (2007).
    [CrossRef]
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  4. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
    [CrossRef]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
    [CrossRef]
  6. V. Lomakin, M. Lu, and E. Michielssen, “Optical wave properties of nano-particle chains coupled with a metal surface,” Opt. Express 15, 11827-11842 (2007).
    [CrossRef] [PubMed]
  7. D. van Orden, Y. Fainman, and V. Lomakin, “Optical waves on nanoparticle chains coupled with surfaces,” Opt. Lett. 34, 422-424 (2009).
    [CrossRef] [PubMed]
  8. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  9. J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77, 115419 (2008).
    [CrossRef]
  10. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71, 115409 (2005).
    [CrossRef]
  11. M. I. Stockman, “Spasers explained,” Nature Photonics 2, 327-329 (2008).
    [CrossRef]
  12. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209, 167 (2003).
    [CrossRef] [PubMed]
  13. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524-1526 (2005).
    [CrossRef] [PubMed]
  14. A. B. Evlyukhin, S. I. Bozhevolniy, A. L. Stepanov, and J. R. Krenn, “Splitting of a surface plasmon polariton beam by chains of nanoparticles,” Appl. Phys. B: Lasers Opt. 84, 29-34 (2006).
    [CrossRef]
  15. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576-6582 (2007).
    [CrossRef] [PubMed]
  16. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667-16680 (2007).
    [CrossRef] [PubMed]
  17. I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16, 3924-3930 (2008).
    [CrossRef] [PubMed]
  18. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  19. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  20. J. B. Pendry, “Optics: Positively negative,” Nature 423, 22-23 (2003).
    [CrossRef] [PubMed]
  21. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  22. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  23. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef] [PubMed]
  24. A. D. Boardman, N. King, and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365-389 (2005).
    [CrossRef]
  25. A. D. Boardman and K. Marinov, “Nonradiating and radiating configurations driven by left-handed metamaterials,” J. Opt. Soc. Am. B 23, 543-552 (2006).
    [CrossRef]
  26. E. Ozbay, “The magical world of photonic metamaterials,” Opt. Photon. News19, 22-27 (2008).
    [CrossRef]
  27. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics 1, 41-48 (2007).
    [CrossRef]
  28. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735-745 (2003).
    [CrossRef] [PubMed]
  29. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
    [CrossRef] [PubMed]
  30. C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281-286 (2008).
    [CrossRef] [PubMed]
  31. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Electrodynamics of Continuous Media, Vol. 8 (Pergamon, 1984).
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering Light by Small Particles (Wiley-Interscience, 1998).
    [CrossRef]
  33. M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photon. 3, 450-452 (2009).
    [CrossRef]
  34. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17, 18820-18825 (2009).
    [CrossRef]
  35. I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998).
    [CrossRef]
  36. P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci. 151, 159-170 (1999).
    [CrossRef]
  37. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
    [CrossRef]
  38. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
    [CrossRef]
  39. L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
    [CrossRef]
  40. A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by fanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
    [CrossRef]
  41. A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22, 2027-2038 (2005).
    [CrossRef]
  42. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657-699 (1996).
    [CrossRef]
  43. T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polariton band-gap structures,” Phys. Rev. B 71, 125429 (2005).
    [CrossRef]
  44. T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
    [CrossRef]
  45. A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
    [CrossRef]
  46. J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
    [CrossRef]
  47. M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green's tensor approach,” J. Opt. Soc. Am. A 18, 854-861 (2001).
    [CrossRef]
  48. B. T. Draine, “The disctrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
    [CrossRef]
  49. A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B 71, 134304 (2005).
    [CrossRef]
  50. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
    [CrossRef]

2009

2008

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281-286 (2008).
[CrossRef] [PubMed]

I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16, 3924-3930 (2008).
[CrossRef] [PubMed]

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77, 115419 (2008).
[CrossRef]

M. I. Stockman, “Spasers explained,” Nature Photonics 2, 327-329 (2008).
[CrossRef]

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by fanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

2007

2006

A. D. Boardman and K. Marinov, “Nonradiating and radiating configurations driven by left-handed metamaterials,” J. Opt. Soc. Am. B 23, 543-552 (2006).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolniy, A. L. Stepanov, and J. R. Krenn, “Splitting of a surface plasmon polariton beam by chains of nanoparticles,” Appl. Phys. B: Lasers Opt. 84, 29-34 (2006).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

2005

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22, 2027-2038 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polariton band-gap structures,” Phys. Rev. B 71, 125429 (2005).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B 71, 134304 (2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524-1526 (2005).
[CrossRef] [PubMed]

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71, 115409 (2005).
[CrossRef]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

A. D. Boardman, N. King, and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365-389 (2005).
[CrossRef]

2004

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
[CrossRef]

2003

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

J. B. Pendry, “Optics: Positively negative,” Nature 423, 22-23 (2003).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735-745 (2003).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green's tensor approach,” J. Opt. Soc. Am. A 18, 854-861 (2001).
[CrossRef]

2000

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

1999

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci. 151, 159-170 (1999).
[CrossRef]

1998

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

1996

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657-699 (1996).
[CrossRef]

1988

B. T. Draine, “The disctrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Aussenegg, F. R.

Banks, D. P.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Bergman, D. J.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71, 115409 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Boardman, A. D.

A. D. Boardman and K. Marinov, “Nonradiating and radiating configurations driven by left-handed metamaterials,” J. Opt. Soc. Am. B 23, 543-552 (2006).
[CrossRef]

A. D. Boardman, N. King, and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365-389 (2005).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

Boltasseva, A.

Bozhevolniy, S. I.

A. B. Evlyukhin, S. I. Bozhevolniy, A. L. Stepanov, and J. R. Krenn, “Splitting of a surface plasmon polariton beam by chains of nanoparticles,” Appl. Phys. B: Lasers Opt. 84, 29-34 (2006).
[CrossRef]

Bozhevolnyi, S. I.

I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16, 3924-3930 (2008).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576-6582 (2007).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667-16680 (2007).
[CrossRef] [PubMed]

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B 71, 134304 (2005).
[CrossRef]

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22, 2027-2038 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polariton band-gap structures,” Phys. Rev. B 71, 125429 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
[CrossRef]

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Brucoli, G.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Cajko, F.

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77, 115419 (2008).
[CrossRef]

Chai, L.

L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Chen, S.

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

Chichkov, B. N.

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Dai, J.

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77, 115419 (2008).
[CrossRef]

Dereux, A.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657-699 (1996).
[CrossRef]

Ditlbacher, H.

Draine, B. T.

B. T. Draine, “The disctrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Drezet, A.

Eason, R. W.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Evlyukhin, A. B.

I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16, 3924-3930 (2008).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576-6582 (2007).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667-16680 (2007).
[CrossRef] [PubMed]

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolniy, A. L. Stepanov, and J. R. Krenn, “Splitting of a surface plasmon polariton beam by chains of nanoparticles,” Appl. Phys. B: Lasers Opt. 84, 29-34 (2006).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B 71, 134304 (2005).
[CrossRef]

Fainman, Y.

Farsari, M.

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photon. 3, 450-452 (2009).
[CrossRef]

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Fotakis, C.

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci. 151, 159-170 (1999).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

García-Vidal, F. J.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Girard, C.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657-699 (1996).
[CrossRef]

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Grigoropoulos, C. P.

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

Grivas, C.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Grosu, V.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Hohenau, A.

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

Hvam, J. M.

Jia, W.

L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Kawaguchi, Y.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by fanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

King, N.

A. D. Boardman, N. King, and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365-389 (2005).
[CrossRef]

Kiyan, R.

Koch, J.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Kottmann, J. P.

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
[CrossRef]

Krenn, J. R.

A. B. Evlyukhin, S. I. Bozhevolniy, A. L. Stepanov, and J. R. Krenn, “Splitting of a surface plasmon polariton beam by chains of nanoparticles,” Appl. Phys. B: Lasers Opt. 84, 29-34 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524-1526 (2005).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Kurosaki, R.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by fanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Kuznetsov, A. I.

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Electrodynamics of Continuous Media, Vol. 8 (Pergamon, 1984).

Leitner, A.

Leosson, K.

Li, K.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71, 115409 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Li, X.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71, 115409 (2005).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Electrodynamics of Continuous Media, Vol. 8 (Pergamon, 1984).

Lomakin, V.

Lu, M.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Mailis, S.

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Marinov, K.

Martin, O. J. F.

M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green's tensor approach,” J. Opt. Soc. Am. A 18, 854-861 (2001).
[CrossRef]

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
[CrossRef]

Martín-Moreno, L.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Michielssen, E.

Mills, J. D.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Narazaki, A.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by fanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Ni, X.-C.

L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Niino, H.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by fanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Nikolajsen, T.

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806-3819 (2007).
[CrossRef]

Ozbay, E.

E. Ozbay, “The magical world of photonic metamaterials,” Opt. Photon. News19, 22-27 (2008).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Papakonstantinou, P.

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci. 151, 159-170 (1999).
[CrossRef]

Passinger, S.

Paulus, M.

Pendry, J. B.

J. B. Pendry, “Optics: Positively negative,” Nature 423, 22-23 (2003).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Podolskiy, V. A.

Quinten, M.

Radko, I. P.

Reinhardt, C.

Requicha, A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281-286 (2008).
[CrossRef] [PubMed]

Sarychev, A. K.

Sato, T.

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by fanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Scharf, T.

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281-286 (2008).
[CrossRef] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Schider, G.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Søndergaard, T.

A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22, 2027-2038 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polariton band-gap structures,” Phys. Rev. B 71, 125429 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
[CrossRef]

Steinberger, B.

Stepanov, A. L.

Stockman, M. I.

M. I. Stockman, “Spasers explained,” Nature Photonics 2, 327-329 (2008).
[CrossRef]

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77, 115419 (2008).
[CrossRef]

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71, 115409 (2005).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Tsukerman, I.

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77, 115419 (2008).
[CrossRef]

Vainos, N. A.

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci. 151, 159-170 (1999).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

van Orden, D.

Velasco, L.

A. D. Boardman, N. King, and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365-389 (2005).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Wang, C.-Y.

L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Wang, Z.-J.

L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Willis, D. A.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
[CrossRef]

Yang, L.

L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Zergioti, I.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

Appl. Phys. B: Lasers Opt.

A. B. Evlyukhin, S. I. Bozhevolniy, A. L. Stepanov, and J. R. Krenn, “Splitting of a surface plasmon polariton beam by chains of nanoparticles,” Appl. Phys. B: Lasers Opt. 84, 29-34 (2006).
[CrossRef]

Appl. Phys. Express

A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, and H. Niino, “Nano- and microdot array formation of FeSi2 by fanosecond excimer laser-induced forward transfer,” Appl. Phys. Express 1, 057001 (2008).
[CrossRef]

Appl. Phys. Lett.

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86, 244103 (2005).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

L. Yang, C.-Y. Wang, X.-C. Ni, Z.-J. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89, 161110 (2006).
[CrossRef]

Appl. Surf. Sci.

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, S. Chen, and C. P. Grigoropoulos, “Microdeposition of metals by femtosecond excimer laser,” Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci. 151, 159-170 (1999).
[CrossRef]

Astrophys. J.

B. T. Draine, “The disctrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Electromagnetics

A. D. Boardman, N. King, and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365-389 (2005).
[CrossRef]

IEEE Trans. Antennas Propag.

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
[CrossRef]

J. Microsc.

C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281-286 (2008).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209, 167 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
[CrossRef]

J. Phys. Chem. C

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806-3819 (2007).
[CrossRef]

Nat. Photon.

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nat. Photon. 3, 450-452 (2009).
[CrossRef]

Nature

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335-338 (2005).
[CrossRef] [PubMed]

J. B. Pendry, “Optics: Positively negative,” Nature 423, 22-23 (2003).
[CrossRef] [PubMed]

Nature Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003).
[CrossRef]

Nature Photonics

M. I. Stockman, “Spasers explained,” Nature Photonics 2, 327-329 (2008).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics 1, 41-48 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Phys. Rev. B

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B 71, 134304 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polariton band-gap structures,” Phys. Rev. B 71, 125429 (2005).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study,” Phys. Rev. B 69, 045422 (2004).
[CrossRef]

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I. Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B 77, 115419 (2008).
[CrossRef]

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71, 115409 (2005).
[CrossRef]

Phys. Rev. Lett.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Rep. Prog. Phys.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657-699 (1996).
[CrossRef]

Science

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other

E. Ozbay, “The magical world of photonic metamaterials,” Opt. Photon. News19, 22-27 (2008).
[CrossRef]

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Electrodynamics of Continuous Media, Vol. 8 (Pergamon, 1984).

C. F. Bohren and D. R. Huffman, Absorption and Scattering Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Laser-induced backward transfer scheme.

Fig. 2
Fig. 2

(a) Top-view SEM image of a gold particle with a diameter of 800 nm generated by LIT. (b) Side-view SEM image of an array of 800 nm spherical gold particles transferred onto a glass substrate by subsequent 30 fs laser pulses (the image is taken at an angle of 45°). The laser beam with a diameter of 8 mm is focused onto the sample surface by a 20 mm focus lens. Laser pulse energy is 75 nJ .

Fig. 3
Fig. 3

SEM images of polymer woodpile matrix fabricated by 2PP of an organic–inorganic hybrid polymer and locally filled with gold nanoparticles using LIT (a)–(d). The distance between the lines in the woodpile structures is 500 nm (a) and 700 nm (c); (b) and (d) are the corresponding magnified images of the gold nanoparticles in the structures. Gold nanoparticles fabricated by independent positioning of the donor and receiver substrates (e),(f).

Fig. 4
Fig. 4

Spherical gold nanoparticles placed close to each other by the independent positioning of the donor and receiver substrates.

Fig. 5
Fig. 5

Experimental arrangements for the investigation of SPP scattering on isolated gold nanoparticles. The SPPs are excited with a Gaussian laser beam. The light–SPP coupling is accomplished by (a) a circular line segment using plane wavefronts or (b) a straight line using curved wavefronts of the Gaussian laser beam. The spherical nanoparticle is positioned in the center of the circular structure or close to the line, respectively.

Fig. 6
Fig. 6

(a) SPP excitation on a straight polymer line with a Gaussian laser beam. The polarization is set perpendicular to the line. The laser beam is focused 10 μ m below the sample surface, resulting in a focusing of the SPP beams at a distance of 10 μ m from the line. (b) Scattering of the SPP beam on a 800 nm diameter spherical gold particle.

Fig. 7
Fig. 7

Schematic representation of the particles: (a) spherical particle on the metal surface. (b) spherical particle consisting of multiple dipole elements after the discretization procedure.

Fig. 8
Fig. 8

Images of the leakage radiation showing the interaction of focused SPP beams with a nanoparticle of 800 nm diameter. SPPs are excited by a He–Ne laser with the λ = 632.8 nm wavelength. The beam waist is (a) 500 nm , (b) 1500 nm , and (c) 5000 nm . The particle is situated in the center of the images. Figures (d–f) show numerical simulations of the SPP scattering on a particle of 200 nm diameter using the same beam waists.

Fig. 9
Fig. 9

In-plane angular dependence of the ratio between SPP differential scattering cross sections calculated in the general case σ SPP and in the electric dipole approximation σ d SPP . SPPs are excited by 630 nm laser radiation. D is the diameter of the scattering nanoparticles. The SPP incident direction corresponds to the zero in-plane angle. The SPP beam waist is 1500 nm .

Fig. 10
Fig. 10

(a) Total SPP field intensity (incoming and scattered fields) calculated in the electric dipole approximation and (b) in the general approach for the SPP Gaussian beam scattered by a spherical gold particle with a diameter of 215 nm . The intensity cross sections along y at x = 1 μ m (c) and along x at y = 0 (d) show the differences in the visibility of the interference patterns in the forward and backward direction, respectively. The SPP beam waist is 1500 nm .

Fig. 11
Fig. 11

(a) Normalized scattered and absorbed powers for SPP (light) scattering by spherical gold nanoparticles located on a flat gold surface (in free space) as a function of the particle size (R is the particle radius). (b) The SPP extinction, absorption, and scattering spectra for gold nanoparticles with a radius of R = 25 nm and 100 nm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( r ) = E 0 ( r ) + k 2 V G ̂ ( r , r ) [ ε p ( r ) ε d ] E ( r ) d r ,
p = ε 0 V [ ε p ( r ) ε d ] E ( r ) d r ,
m = i ω ε 0 2 V ( r r p ) × [ ε p ( r ) ε d ] E ( r ) d r ,

Metrics