Abstract

A vertical metallic meander structure with a rectangular corrugated surface profile represents a frequency-selective surface in which the excitation and interaction of localized surface plasmon modes are controlled in a flexible fashion by its geometrical parameters over a large spectral range. In this report we investigate the optical properties of metallic meanders numerically. Although the structure is simple from both the structural geometry and the nanofabrication point of view, its plasmonic band structure manifests rich features that would be very attractive for plasmonic functional devices. In particular, the short-range surface plasmon mode can be tuned by changing the meander depth without altering the long-range surface plasmon mode. To obtain deeper physical insight into the relationship between the structural geometry and its optical response, a transmission line equivalent circuit model is used. It is revealed that circuit parameters that were fitted from numerical scattering parameters have physical relationships with the structural parameters, which can be described by quasi-static or radiative descriptions. In certain frequency ranges, enhanced transmission occurs due to the interaction of magnetic and electric dipole resonances. The calculated effective material parameters reveal that enhanced transmission occurs around the near-zero index frequencies. The application potential of these structures as frequency filters is discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992-4999 (1999).
    [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  3. R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117-1120 (1985).
    [CrossRef] [PubMed]
  4. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482-490 (2003).
    [CrossRef] [PubMed]
  5. D. Gerard, L. Salomon, F. de Fornel, and A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the week and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652-3662 (2004).
    [CrossRef] [PubMed]
  6. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
    [CrossRef]
  7. Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
    [CrossRef]
  8. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
    [CrossRef]
  9. T. Okamoto, F. H'Dhili, and S. Kawata, “Towards plasmonic band gap lasers,” Appl. Phys. Lett. 85, 3968-3970 (2004).
    [CrossRef]
  10. G. Winter and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?” New J. Phys. 8, 125 (2006).
    [CrossRef]
  11. J.-C. Weeber, A. Bouhelier, G. Colas des France, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352-1359 (2007).
    [CrossRef] [PubMed]
  12. M. J. Gonzalez, A. L. Stepanov, J.-C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32, 2704-2706 (2007).
    [CrossRef] [PubMed]
  13. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2008).
    [CrossRef]
  14. G. Margheri, T. Del Rosso, S. Sottini, S. Trigari, and E. Giorgetti, “All-optical switches based on the coupling of surfaces plasmon polaritons,” Opt. Express 16, 9869-9883 (2008).
    [CrossRef] [PubMed]
  15. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673-3685 (2004).
    [CrossRef] [PubMed]
  16. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface enhanced Raman scattering,” Opt. Express 16, 12469-12477 (2008).
    [CrossRef] [PubMed]
  17. A. Degiron and T. W. Ebbeson, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 590 (2005).
    [CrossRef]
  18. S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).
  19. W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134-11138 (2000).
    [CrossRef]
  20. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
    [CrossRef]
  21. C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
    [CrossRef]
  22. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
    [CrossRef] [PubMed]
  23. H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi A 204, 3886-3900 (2007).
    [CrossRef]
  24. R. Ulrich, “Far infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37-55 (1967).
    [CrossRef]
  25. N. Engheta, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
    [CrossRef] [PubMed]
  26. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [CrossRef] [PubMed]
  27. T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
    [CrossRef]
  28. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698-1702 (2007).
    [CrossRef] [PubMed]
  29. S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40-43 (2007).
    [CrossRef]
  30. H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Longitudinal capacitance design for optical left-handed metamaterials,” Phys. Status Solidi B 244, 1243-1250 (2007).
    [CrossRef]
  31. L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Analysis of metamaterials using transmission line models,” Appl. Phys. B: Lasers Opt. 86, 425-429 (2007).
    [CrossRef]
  32. L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
    [CrossRef]
  33. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech, 2003).
  34. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
    [CrossRef]
  35. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11, 114019 (2009).
    [CrossRef]
  36. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996).
    [CrossRef]
  37. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510-2516 (1999).
    [CrossRef]
  38. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  39. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
    [CrossRef] [PubMed]
  40. I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
    [CrossRef]
  41. W. L. Barnes, T. W. Presit, S. L. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
    [CrossRef]
  42. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
    [CrossRef]
  43. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595-597 (2000).
    [CrossRef]
  44. G. V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, “Transmission line models for negative refractive index media and associated implementations without excess resonators,” IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).
    [CrossRef]
  45. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62-80 (2007).
    [CrossRef]
  46. R. N. Bracewell, “Analogues of an ionized medium,” Wireless Engineer 31, 320-326 (1954).
  47. D. M. Pozar, Microwave Engineering, 3rd. ed. (Wiley, 2005).
  48. J. Parsons, E. Hendry, B. Augui, W. L. Barnes, and J. R. Sambles, “Localized modes of subwavelength hole arrays in thin metal films,” Proc. SPIE 6988, 69880Y (2008).
    [CrossRef]
  49. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  50. S. Maslovski, S. Tretyakov, and P. Alitalo, “Near-field enhancement and imaging in double planar polariton-resonant structures,” J. Appl. Phys. 96, 1293-1300 (2004).
    [CrossRef]
  51. A. Alù and N. Engheta, “Physical insight into the growing evanescent fields of double-negative metamaterial lenses using their circuit equivalence,” IEEE Trans. Antennas Propag. 54, 268-272 (2006).
    [CrossRef]
  52. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
    [CrossRef] [PubMed]
  53. A. Sihvola and I. Lindell, “EZNZ vs. ENZ metamaterials: anisotropy flavors extreme parameters,” in Proceedings of 2nd European Topical Meeting on Nanophotonics and Metamaterials (NanoMeta, 2009), Seefeld, Austria, January 5-8, 2009.
  54. A. Koeck, E. Gornik, M. Hauser, and W. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett. 57, 2327-2329 (1990).
    [CrossRef]
  55. P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
    [CrossRef]
  56. N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
    [CrossRef]
  57. H. Summers, D. Matthews, K. Njoh, and R. Errington, “Beam-steering at optical frequencies using metal-grating antennas,” in Proceedings of the 19th IEEE Lasers and Electro-Optics Society Meeting (IEEE, 2006), pp. 478-479.

2009

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11, 114019 (2009).
[CrossRef]

2008

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2008).
[CrossRef]

J. Parsons, E. Hendry, B. Augui, W. L. Barnes, and J. R. Sambles, “Localized modes of subwavelength hole arrays in thin metal films,” Proc. SPIE 6988, 69880Y (2008).
[CrossRef]

S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[CrossRef]

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

G. Margheri, T. Del Rosso, S. Sottini, S. Trigari, and E. Giorgetti, “All-optical switches based on the coupling of surfaces plasmon polaritons,” Opt. Express 16, 9869-9883 (2008).
[CrossRef] [PubMed]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface enhanced Raman scattering,” Opt. Express 16, 12469-12477 (2008).
[CrossRef] [PubMed]

2007

M. J. Gonzalez, A. L. Stepanov, J.-C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32, 2704-2706 (2007).
[CrossRef] [PubMed]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698-1702 (2007).
[CrossRef] [PubMed]

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40-43 (2007).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Longitudinal capacitance design for optical left-handed metamaterials,” Phys. Status Solidi B 244, 1243-1250 (2007).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Analysis of metamaterials using transmission line models,” Appl. Phys. B: Lasers Opt. 86, 425-429 (2007).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi A 204, 3886-3900 (2007).
[CrossRef]

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62-80 (2007).
[CrossRef]

J.-C. Weeber, A. Bouhelier, G. Colas des France, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

2006

G. Winter and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?” New J. Phys. 8, 125 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Physical insight into the growing evanescent fields of double-negative metamaterial lenses using their circuit equivalence,” IEEE Trans. Antennas Propag. 54, 268-272 (2006).
[CrossRef]

2005

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbeson, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 590 (2005).
[CrossRef]

N. Engheta, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

2004

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

T. Okamoto, F. H'Dhili, and S. Kawata, “Towards plasmonic band gap lasers,” Appl. Phys. Lett. 85, 3968-3970 (2004).
[CrossRef]

S. Maslovski, S. Tretyakov, and P. Alitalo, “Near-field enhancement and imaging in double planar polariton-resonant structures,” J. Appl. Phys. 96, 1293-1300 (2004).
[CrossRef]

D. Gerard, L. Salomon, F. de Fornel, and A. V. Zayats, “Analysis of the Bloch mode spectra of surface polaritonic crystals in the week and strong coupling regimes: grating-enhanced transmission at oblique incidence and suppression of SPP radiative losses,” Opt. Express 12, 3652-3662 (2004).
[CrossRef] [PubMed]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673-3685 (2004).
[CrossRef] [PubMed]

2003

N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482-490 (2003).
[CrossRef] [PubMed]

G. V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, “Transmission line models for negative refractive index media and associated implementations without excess resonators,” IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).
[CrossRef]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

2002

I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

2000

I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595-597 (2000).
[CrossRef]

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134-11138 (2000).
[CrossRef]

1999

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992-4999 (1999).
[CrossRef]

G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510-2516 (1999).
[CrossRef]

P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
[CrossRef]

1996

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996).
[CrossRef]

W. L. Barnes, T. W. Presit, S. L. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

1990

A. Koeck, E. Gornik, M. Hauser, and W. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett. 57, 2327-2329 (1990).
[CrossRef]

1985

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1967

R. Ulrich, “Far infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37-55 (1967).
[CrossRef]

1954

R. N. Bracewell, “Analogues of an ionized medium,” Wireless Engineer 31, 320-326 (1954).

Alitalo, P.

S. Maslovski, S. Tretyakov, and P. Alitalo, “Near-field enhancement and imaging in double planar polariton-resonant structures,” J. Appl. Phys. 96, 1293-1300 (2004).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Physical insight into the growing evanescent fields of double-negative metamaterial lenses using their circuit equivalence,” IEEE Trans. Antennas Propag. 54, 268-272 (2006).
[CrossRef]

Augui, B.

J. Parsons, E. Hendry, B. Augui, W. L. Barnes, and J. R. Sambles, “Localized modes of subwavelength hole arrays in thin metal films,” Proc. SPIE 6988, 69880Y (2008).
[CrossRef]

Avrutsky, I.

Aydinli, A.

Barnes, W. L.

J. Parsons, E. Hendry, B. Augui, W. L. Barnes, and J. R. Sambles, “Localized modes of subwavelength hole arrays in thin metal films,” Proc. SPIE 6988, 69880Y (2008).
[CrossRef]

G. Winter and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?” New J. Phys. 8, 125 (2006).
[CrossRef]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673-3685 (2004).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Presit, S. L. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Beinstingl, W.

A. Koeck, E. Gornik, M. Hauser, and W. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett. 57, 2327-2329 (1990).
[CrossRef]

Bonod, N.

Bouhelier, A.

J.-C. Weeber, A. Bouhelier, G. Colas des France, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Bracewell, R. N.

R. N. Bracewell, “Analogues of an ionized medium,” Wireless Engineer 31, 320-326 (1954).

Brueck, S. R. J.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Busch, K.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

Capasso, F.

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Chen, Z.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Colas des France, G.

J.-C. Weeber, A. Bouhelier, G. Colas des France, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

de Fornel, F.

Degiron, A.

A. Degiron and T. W. Ebbeson, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 590 (2005).
[CrossRef]

Del Rosso, T.

Dereux, A.

J.-C. Weeber, A. Bouhelier, G. Colas des France, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

M. J. Gonzalez, A. L. Stepanov, J.-C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32, 2704-2706 (2007).
[CrossRef] [PubMed]

Diehl, L.

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Dolling, G.

Dragila, R.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

Ebbeson, T. W.

A. Degiron and T. W. Ebbeson, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 590 (2005).
[CrossRef]

Economou, E. N.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Edamura, T.

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Eleftheriades, G. V.

G. V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, “Transmission line models for negative refractive index media and associated implementations without excess resonators,” IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).
[CrossRef]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698-1702 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Physical insight into the growing evanescent fields of double-negative metamaterial lenses using their circuit equivalence,” IEEE Trans. Antennas Propag. 54, 268-272 (2006).
[CrossRef]

N. Engheta, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Enkrich, C.

Enoch, S.

N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482-490 (2003).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Errington, R.

H. Summers, D. Matthews, K. Njoh, and R. Errington, “Beam-steering at optical frequencies using metal-grating antennas,” in Proceedings of the 19th IEEE Lasers and Electro-Optics Society Meeting (IEEE, 2006), pp. 478-479.

Ertas, G.

Essig, S.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

Fan, J.

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Fan, W.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Finger, N.

P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
[CrossRef]

Frauenglass, A.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Frölich, A.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

Fu, L.

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi A 204, 3886-3900 (2007).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Longitudinal capacitance design for optical left-handed metamaterials,” Phys. Status Solidi B 244, 1243-1250 (2007).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Analysis of metamaterials using transmission line models,” Appl. Phys. B: Lasers Opt. 86, 425-429 (2007).
[CrossRef]

Gerard, D.

Gerthsen, D.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

Giessen, H.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11, 114019 (2009).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi A 204, 3886-3900 (2007).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Longitudinal capacitance design for optical left-handed metamaterials,” Phys. Status Solidi B 244, 1243-1250 (2007).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Analysis of metamaterials using transmission line models,” Appl. Phys. B: Lasers Opt. 86, 425-429 (2007).
[CrossRef]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[CrossRef]

Giorgetti, E.

Gippius, N. A.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11, 114019 (2009).
[CrossRef]

Gonzalez, M. J.

Gornik, E.

P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
[CrossRef]

A. Koeck, E. Gornik, M. Hauser, and W. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett. 57, 2327-2329 (1990).
[CrossRef]

Granet, G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11, 114019 (2009).
[CrossRef]

G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510-2516 (1999).
[CrossRef]

Guerin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Guo, H.

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Longitudinal capacitance design for optical left-handed metamaterials,” Phys. Status Solidi B 244, 1243-1250 (2007).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Analysis of metamaterials using transmission line models,” Appl. Phys. B: Lasers Opt. 86, 425-429 (2007).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi A 204, 3886-3900 (2007).
[CrossRef]

Hahn, H.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

Hauser, M.

A. Koeck, E. Gornik, M. Hauser, and W. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett. 57, 2327-2329 (1990).
[CrossRef]

H'Dhili, F.

T. Okamoto, F. H'Dhili, and S. Kawata, “Towards plasmonic band gap lasers,” Appl. Phys. Lett. 85, 3968-3970 (2004).
[CrossRef]

Heitmann, D.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992-4999 (1999).
[CrossRef]

Hendry, E.

J. Parsons, E. Hendry, B. Augui, W. L. Barnes, and J. R. Sambles, “Localized modes of subwavelength hole arrays in thin metal films,” Proc. SPIE 6988, 69880Y (2008).
[CrossRef]

Hohenau, A.

Hooper, I. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
[CrossRef]

Iyer, Ashwin K.

G. V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, “Transmission line models for negative refractive index media and associated implementations without excess resonators,” IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kafesaki, M.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Kan, H.

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Kawata, S.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

T. Okamoto, F. H'Dhili, and S. Kawata, “Towards plasmonic band gap lasers,” Appl. Phys. Lett. 85, 3968-3970 (2004).
[CrossRef]

Kellermann, P. O.

P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
[CrossRef]

Kitson, S. L.

W. L. Barnes, T. W. Presit, S. L. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Kocabas, A.

Kochergin, V.

Koeck, A.

A. Koeck, E. Gornik, M. Hauser, and W. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett. 57, 2327-2329 (1990).
[CrossRef]

Koschny, Th.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

Kriegler, C. E.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

Li, J.

S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).

Li, L.

Lindell, I.

A. Sihvola and I. Lindell, “EZNZ vs. ENZ metamaterials: anisotropy flavors extreme parameters,” in Proceedings of 2nd European Topical Meeting on Nanophotonics and Metamaterials (NanoMeta, 2009), Seefeld, Austria, January 5-8, 2009.

Linden, S.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

Liu, N.

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Longitudinal capacitance design for optical left-handed metamaterials,” Phys. Status Solidi B 244, 1243-1250 (2007).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Analysis of metamaterials using transmission line models,” Appl. Phys. B: Lasers Opt. 86, 425-429 (2007).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi A 204, 3886-3900 (2007).
[CrossRef]

Liu, S.

S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).

Luther-Davies, B.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2008).
[CrossRef]

Malloy, K. J.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Margheri, G.

Markey, L.

J.-C. Weeber, A. Bouhelier, G. Colas des France, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Maslovski, S.

S. Maslovski, S. Tretyakov, and P. Alitalo, “Near-field enhancement and imaging in double planar polariton-resonant structures,” J. Appl. Phys. 96, 1293-1300 (2004).
[CrossRef]

Matthews, D.

H. Summers, D. Matthews, K. Njoh, and R. Errington, “Beam-steering at optical frequencies using metal-grating antennas,” in Proceedings of the 19th IEEE Lasers and Electro-Optics Society Meeting (IEEE, 2006), pp. 478-479.

Meyrath, T. P.

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[CrossRef]

Minhas, B. K.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Müller, E.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

Munk, B. A.

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
[CrossRef]

Neviere, M.

Njoh, K.

H. Summers, D. Matthews, K. Njoh, and R. Errington, “Beam-steering at optical frequencies using metal-grating antennas,” in Proceedings of the 19th IEEE Lasers and Electro-Optics Society Meeting (IEEE, 2006), pp. 478-479.

Okamoto, T.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

T. Okamoto, F. H'Dhili, and S. Kawata, “Towards plasmonic band gap lasers,” Appl. Phys. Lett. 85, 3968-3970 (2004).
[CrossRef]

Parsons, J.

J. Parsons, E. Hendry, B. Augui, W. L. Barnes, and J. R. Sambles, “Localized modes of subwavelength hole arrays in thin metal films,” Proc. SPIE 6988, 69880Y (2008).
[CrossRef]

Pendry, J. B.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Pflgl, C.

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Popov, E.

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 3rd. ed. (Wiley, 2005).

Preist, T. W.

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134-11138 (2000).
[CrossRef]

Presit, T. W.

W. L. Barnes, T. W. Presit, S. L. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Quidant, R.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rill, M. S.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Salomon, L.

Sambles, J. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

J. Parsons, E. Hendry, B. Augui, W. L. Barnes, and J. R. Sambles, “Localized modes of subwavelength hole arrays in thin metal films,” Proc. SPIE 6988, 69880Y (2008).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
[CrossRef]

W. L. Barnes, T. W. Presit, S. L. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Sambles, R. J.

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134-11138 (2000).
[CrossRef]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2008).
[CrossRef]

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Scholz, F.

P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
[CrossRef]

Schrenk, W.

P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
[CrossRef]

Schröter, U.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992-4999 (1999).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Schweizer, H.

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Analysis of metamaterials using transmission line models,” Appl. Phys. B: Lasers Opt. 86, 425-429 (2007).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Longitudinal capacitance design for optical left-handed metamaterials,” Phys. Status Solidi B 244, 1243-1250 (2007).
[CrossRef]

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi A 204, 3886-3900 (2007).
[CrossRef]

P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
[CrossRef]

Senlik, S. S.

Siddiqui, Omar

G. V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, “Transmission line models for negative refractive index media and associated implementations without excess resonators,” IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).
[CrossRef]

Sihvola, A.

A. Sihvola and I. Lindell, “EZNZ vs. ENZ metamaterials: anisotropy flavors extreme parameters,” in Proceedings of 2nd European Topical Meeting on Nanophotonics and Metamaterials (NanoMeta, 2009), Seefeld, Austria, January 5-8, 2009.

Simonen, J.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

Simovski, C. R.

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62-80 (2007).
[CrossRef]

Smith, D. R.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Sottini, S.

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Stepanov, A. L.

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2008).
[CrossRef]

Summers, H.

H. Summers, D. Matthews, K. Njoh, and R. Errington, “Beam-steering at optical frequencies using metal-grating antennas,” in Proceedings of the 19th IEEE Lasers and Electro-Optics Society Meeting (IEEE, 2006), pp. 478-479.

Tan, W.-C.

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134-11138 (2000).
[CrossRef]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Thiel, M.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Tikhodeev, S. G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11, 114019 (2009).
[CrossRef]

Tretyakov, S.

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40-43 (2007).
[CrossRef]

S. Maslovski, S. Tretyakov, and P. Alitalo, “Near-field enhancement and imaging in double planar polariton-resonant structures,” J. Appl. Phys. 96, 1293-1300 (2004).
[CrossRef]

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech, 2003).

Trigari, S.

Ulrich, R.

R. Ulrich, “Far infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37-55 (1967).
[CrossRef]

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

von Freymann, G.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

Vukovic, S.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

Wang, Q.

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).

Wedge, S.

Weeber, J.-C.

J.-C. Weeber, A. Bouhelier, G. Colas des France, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

M. J. Gonzalez, A. L. Stepanov, J.-C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32, 2704-2706 (2007).
[CrossRef] [PubMed]

Wegener, M.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

Weiss, T.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11, 114019 (2009).
[CrossRef]

Winter, G.

G. Winter and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?” New J. Phys. 8, 125 (2006).
[CrossRef]

Winterhoff, R.

P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
[CrossRef]

Wu, S.

S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).

Yamanishi, M.

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Yin, X.

S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).

Yu, N.

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Zayats, A. V.

Zentgraf, T.

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[CrossRef]

Zhang, S.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

Zhao, Y.

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2008).
[CrossRef]

Zhou, J.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Zhu, D.

S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).

Zhu, Y.

S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).

Appl. Phys. B: Lasers Opt.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. von Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B: Lasers Opt. 96, 749-755 (2009).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Analysis of metamaterials using transmission line models,” Appl. Phys. B: Lasers Opt. 86, 425-429 (2007).
[CrossRef]

Appl. Phys. Lett.

S. Wu, Q. Wang, X. Yin, J. Li, D. Zhu, S. Liu, and Y. Zhu, “Enhanced optical transmission: role of the localized surface plasmon,” Appl. Phys. Lett. 93, 101-113 (2008).

T. Okamoto, F. H'Dhili, and S. Kawata, “Towards plasmonic band gap lasers,” Appl. Phys. Lett. 85, 3968-3970 (2004).
[CrossRef]

A. Koeck, E. Gornik, M. Hauser, and W. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes,” Appl. Phys. Lett. 57, 2327-2329 (1990).
[CrossRef]

P. O. Kellermann, N. Finger, W. Schrenk, E. Gornik, R. Winterhoff, H. Schweizer, and F. Scholz, “Wavelength-adjustable surface-emitting single-mode laser diodes with contradirectional surface-mode coupling,” Appl. Phys. Lett. 75, 3748-3750 (1999).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

G. V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, “Transmission line models for negative refractive index media and associated implementations without excess resonators,” IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).
[CrossRef]

IEEE Trans. Antennas Propag.

A. Alù and N. Engheta, “Physical insight into the growing evanescent fields of double-negative metamaterial lenses using their circuit equivalence,” IEEE Trans. Antennas Propag. 54, 268-272 (2006).
[CrossRef]

Infrared Phys.

R. Ulrich, “Far infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37-55 (1967).
[CrossRef]

J. Appl. Phys.

S. Maslovski, S. Tretyakov, and P. Alitalo, “Near-field enhancement and imaging in double planar polariton-resonant structures,” J. Appl. Phys. 96, 1293-1300 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. Degiron and T. W. Ebbeson, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7, 590 (2005).
[CrossRef]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11, 114019 (2009).
[CrossRef]

Z. Chen, I. R. Hooper, and J. R. Sambles, “Coupled surface plasmons on thin silver gratings,” J. Opt. A, Pure Appl. Opt. 10, 015007 (2008).
[CrossRef]

J. Opt. Soc. Am. A

Metamaterials

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62-80 (2007).
[CrossRef]

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40-43 (2007).
[CrossRef]

Nano Lett.

J.-C. Weeber, A. Bouhelier, G. Colas des France, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Nat. Photonics

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2008).
[CrossRef]

N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Nature Mater.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapor deposition,” Nature Mater. 7, 543-546 (2008).
[CrossRef]

New J. Phys.

G. Winter and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?” New J. Phys. 8, 125 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
[CrossRef]

W. L. Barnes, T. W. Presit, S. L. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

W.-C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134-11138 (2000).
[CrossRef]

T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: optical frequency resonance circuits,” Phys. Rev. B 75, 205102 (2007).
[CrossRef]

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992-4999 (1999).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, “Synthesis of transmission line models for metamaterial slabs at optical frequencies,” Phys. Rev. B 78, 115110 (2008).
[CrossRef]

Phys. Rev. Lett.

N. Engheta, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117-1120 (1985).
[CrossRef] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Phys. Status Solidi A

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Negative permeability around 630 nm in nanofabricated vertical meander metamaterials,” Phys. Status Solidi A 204, 3886-3900 (2007).
[CrossRef]

Phys. Status Solidi B

H. Schweizer, L. Fu, H. Guo, N. Liu, and H. Giessen, “Longitudinal capacitance design for optical left-handed metamaterials,” Phys. Status Solidi B 244, 1243-1250 (2007).
[CrossRef]

Proc. SPIE

J. Parsons, E. Hendry, B. Augui, W. L. Barnes, and J. R. Sambles, “Localized modes of subwavelength hole arrays in thin metal films,” Proc. SPIE 6988, 69880Y (2008).
[CrossRef]

Science

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698-1702 (2007).
[CrossRef] [PubMed]

Wireless Engineer

R. N. Bracewell, “Analogues of an ionized medium,” Wireless Engineer 31, 320-326 (1954).

Other

D. M. Pozar, Microwave Engineering, 3rd. ed. (Wiley, 2005).

B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000).
[CrossRef]

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech, 2003).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

A. Sihvola and I. Lindell, “EZNZ vs. ENZ metamaterials: anisotropy flavors extreme parameters,” in Proceedings of 2nd European Topical Meeting on Nanophotonics and Metamaterials (NanoMeta, 2009), Seefeld, Austria, January 5-8, 2009.

H. Summers, D. Matthews, K. Njoh, and R. Errington, “Beam-steering at optical frequencies using metal-grating antennas,” in Proceedings of the 19th IEEE Lasers and Electro-Optics Society Meeting (IEEE, 2006), pp. 478-479.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Schematic of a metallic meander with two unit cells in vacuum composed of a corrugated metallic film with a rectangular ridge profile. The structure is characterized by periodicity P x , metal thickness d, and meander depth D. The groove width W r is set to be P x 2 d . (b) Transmittance spectra of an Ag meander at normal incidence simulated using time-domain transient solver in CST (solid curve) and using FMM (dashed curve).

Fig. 2
Fig. 2

Dispersion diagram of Ag meanders with D = 40 nm , d = 30 nm , and different periodicities plotted in extinction, absorption, and transmittance spectra calculated using FMM. (a)–(c) P x = 200 nm ; (d)–(f) P x = 400 nm . The light dashed lines are diffracted light lines and the dark dashed lines represent the propagating light in free space. The solid lines show the right border of the first Brillouin zone at K x = K g 2 .

Fig. 3
Fig. 3

Transmittance versus frequency calculated using FMM at different incident angles for meanders with (a) P x = 200 nm and (b) P x = 400 nm . The arrows show the position of the Rayleigh frequency induced by the diffraction of the grating [34].

Fig. 4
Fig. 4

(a) Extinction and (b) transmittance spectra of an Ag meander with P x = 400 nm , d = 30 nm , and varied meander depth at normal incidence calculated using FMM.

Fig. 5
Fig. 5

(a) Extinction and (b) transmittance spectra of an Ag meander with D = 40 nm , d = 30 nm , and varied periodicity calculated using FMM.

Fig. 6
Fig. 6

(a) Schematic of a metallic meander structure to show the origin of the elements. The dashed arrows show the current flow responsible for the formation of L 3 . (b) TL circuit model for the meander with the polarization shown in (a). The light gray TL sections represent the free space.

Fig. 7
Fig. 7

Comparison of reflectance/transmittance spectra and phase spectra calculated from the TL circuit model with those from the numerical simulation (CST) for a meander with P x = 500 nm and D = 40 nm at normal incidence. (a) Reflectance, transmittance, and absorption spectra; (b) Phase S 11 and S 21 spectra. Dashed curves are from the TL model, solid curves are from the numerical simulation, and the short dashed curve in (a) is absorption. MR, magnetic resonance; ER, electric resonance.

Fig. 8
Fig. 8

Transmittance and absorption spectra from the TL circuit model with selective combination of circuit elements: (a) with the combination of the magnetic resonator and L 3 ; (b) with the combination of the electric resonator and L 3 ; (c) combining both the magnetic and electric resonators with L 3 .

Fig. 9
Fig. 9

(a),(b) Instantaneous electric field, (c),(d) normalized magnetic field, and (e),(f) current density distributions of a meander with P x = 500 nm , D = 40 nm , and d = 30 nm at the magnetic resonance ( 482 THz , left column) and electric resonance ( 585 THz , right column), respectively. (g) Normalized current density at the lower frequency side of the magnetic resonance (at 200 THz , for instance). Results are taken from CST.

Fig. 10
Fig. 10

Dependence of circuit parameters C 1 , C 2 , L 1 , L 2 , and L 3 on meander depth D. Other parameters are fixed with P x = 400 nm . Solid square curve in (a) and solid circle curve in (c) are results from the quasi-static model [Eqs. (2, 3)]. The dashed curve in (d) represents the radiative model for SRRs.

Fig. 11
Fig. 11

Dependence of circuit parameters ( C 1 , L 1 , C 2 , L 2 , and L 3 ) on meander period P x with fixed D = 40 nm . Solid-square curve in (a) and solid-circle curve in (c) are calculated results using the quasi-static model [Eqs. (2, 3)]. The dashed curve in (d) is from the radiative model for SRRs.

Fig. 12
Fig. 12

(a) Effective material parameters and (b) effective index and transmittance versus frequency for Ag meanders with P x = 500 nm , d = 30 nm , and D = 40 nm .

Fig. 13
Fig. 13

(a) Effective material parameters and (b) effective index and transmittance versus frequency (b) for Ag meanders with P x = 500 nm , d = 30 nm , and D = 80 nm .

Tables (1)

Tables Icon

Table 1 Circuit parameters of the TL model for meanders at P x = 400 nm and d = 30 nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K spp ± m K g = K x = K 0 sin ( θ ) ,
C 1 qs = G 1 P x 2 d c D D c ,
C 2 qs = G 2 D D c P x 2 d c ,

Metrics