Abstract

Mode characteristics for equilateral triangles, squares, and hexagonal resonators with a center hole are numerically simulated by the finite-different time domain (FDTD) technique. The center hole does not break the symmetry behavior of the original resonators and can result in modification of the mode field patterns and mode Q factors. In an equilateral triangle resonator the center hole can suppress the symmetry state of degenerate states with the merit of single mode operation. In a square resonator, the Q factor can be enhanced for some modes with a suitable size of the hole. For a hexagonal resonator with a side length of 1μm and a refractive index of 3.2, the mode Q factors first gradually decrease with the increase of the hole diameter for modes at a wavelength of about 1500nm, then the modes transform to that of a microdisk with a jump of the mode wavelength as the hole diameter approaches 0.7μm. Finally, the mode Q factors greatly enhance as the hole diameter reaches about 1μm. The results indicate that the center hole can greatly modify mode characteristics, especially that of the mode Q factor.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992).
    [CrossRef]
  2. Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
    [CrossRef]
  3. Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, and Y. Du, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170-2172 (2008).
    [CrossRef] [PubMed]
  4. S. Ando, N. Kobayashi, and H. Ando, “Novel hexagonal-facet GaAs/AlGaAs lasers grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 32, 1293-1296 (1993).
    [CrossRef]
  5. Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76, 023822 (2007).
    [CrossRef]
  6. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002).
    [CrossRef]
  7. S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176-178 (1999).
    [CrossRef]
  8. H. Schomerus, J. Wiersig, and M. Hentschel, “Optomechanical probes of resonances in amplifying microresonators,” Phys. Rev. A 70, 012703 (2004).
    [CrossRef]
  9. J. Wiersig and H. Schomerus, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 77, 031802 (2006).
    [CrossRef]
  10. Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of mode quality factors for equilateral triangle semiconductor microlasers with rough sidewalls,” Chin. Phys. Lett. 19, 674-676 (2002).
    [CrossRef]
  11. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41, 857-862 (2005).
    [CrossRef]
  12. Q. Chen, Y. Z. Huang, and L. J. Yu, “Analysis of mode characteristics for deformed square resonators by FDTD technique,” IEEE J. Quantum Electron. 42, 59-63 (2006).
    [CrossRef]
  13. A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).
  14. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]
  15. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).
    [CrossRef]
  16. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far field emission for square resonator,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
    [CrossRef]
  17. W. Zhao and Y. Z. Huang, “Analysis of directional emission in square resonator lasers with an output waveguide,” Chin. Opt. Lett. 5, 463-465 (2007).
  18. J. J. Li, J. X. Wang, and Y. Z. Huang, “Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks,” Opt. Lett. 32, 1563-1565 (2007).
    [CrossRef] [PubMed]
  19. Y. Z. Huang and Y. D. Yang, “Calculation of light delay for coupled microrings by FDTD technique and Padé approximation,” J. Opt. Soc. Am. A 11, 2419-2426 (2009).

2008 (1)

2007 (4)

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

J. J. Li, J. X. Wang, and Y. Z. Huang, “Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks,” Opt. Lett. 32, 1563-1565 (2007).
[CrossRef] [PubMed]

W. Zhao and Y. Z. Huang, “Analysis of directional emission in square resonator lasers with an output waveguide,” Chin. Opt. Lett. 5, 463-465 (2007).

Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76, 023822 (2007).
[CrossRef]

2006 (2)

J. Wiersig and H. Schomerus, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 77, 031802 (2006).
[CrossRef]

Q. Chen, Y. Z. Huang, and L. J. Yu, “Analysis of mode characteristics for deformed square resonators by FDTD technique,” IEEE J. Quantum Electron. 42, 59-63 (2006).
[CrossRef]

2005 (1)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41, 857-862 (2005).
[CrossRef]

2004 (2)

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far field emission for square resonator,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

H. Schomerus, J. Wiersig, and M. Hentschel, “Optomechanical probes of resonances in amplifying microresonators,” Phys. Rev. A 70, 012703 (2004).
[CrossRef]

2002 (2)

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of mode quality factors for equilateral triangle semiconductor microlasers with rough sidewalls,” Chin. Phys. Lett. 19, 674-676 (2002).
[CrossRef]

2001 (1)

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).
[CrossRef]

1999 (1)

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

1993 (1)

S. Ando, N. Kobayashi, and H. Ando, “Novel hexagonal-facet GaAs/AlGaAs lasers grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 32, 1293-1296 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Ando, H.

S. Ando, N. Kobayashi, and H. Ando, “Novel hexagonal-facet GaAs/AlGaAs lasers grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 32, 1293-1296 (1993).
[CrossRef]

Ando, S.

S. Ando, N. Kobayashi, and H. Ando, “Novel hexagonal-facet GaAs/AlGaAs lasers grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 32, 1293-1296 (1993).
[CrossRef]

Baba, T.

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

Backes, S. A.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Baumberg, J. J.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Benson, T. M.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41, 857-862 (2005).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Boriskina, S. V.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41, 857-862 (2005).
[CrossRef]

Che, K. J.

Chen, Q.

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Q. Chen, Y. Z. Huang, and L. J. Yu, “Analysis of mode characteristics for deformed square resonators by FDTD technique,” IEEE J. Quantum Electron. 42, 59-63 (2006).
[CrossRef]

Cleaver, J. R. A.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Du, Y.

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, and Y. Du, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170-2172 (2008).
[CrossRef] [PubMed]

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Fan, Z. C.

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Fujita, M.

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

Guo, W. H.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far field emission for square resonator,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of mode quality factors for equilateral triangle semiconductor microlasers with rough sidewalls,” Chin. Phys. Lett. 19, 674-676 (2002).
[CrossRef]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).

Heberle, A. P.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Hentschel, M.

H. Schomerus, J. Wiersig, and M. Hentschel, “Optomechanical probes of resonances in amplifying microresonators,” Phys. Rev. A 70, 012703 (2004).
[CrossRef]

Hu, Y. H.

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Huang, Y. Z.

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, and Y. Du, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170-2172 (2008).
[CrossRef] [PubMed]

W. Zhao and Y. Z. Huang, “Analysis of directional emission in square resonator lasers with an output waveguide,” Chin. Opt. Lett. 5, 463-465 (2007).

J. J. Li, J. X. Wang, and Y. Z. Huang, “Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks,” Opt. Lett. 32, 1563-1565 (2007).
[CrossRef] [PubMed]

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76, 023822 (2007).
[CrossRef]

Q. Chen, Y. Z. Huang, and L. J. Yu, “Analysis of mode characteristics for deformed square resonators by FDTD technique,” IEEE J. Quantum Electron. 42, 59-63 (2006).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far field emission for square resonator,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of mode quality factors for equilateral triangle semiconductor microlasers with rough sidewalls,” Chin. Phys. Lett. 19, 674-676 (2002).
[CrossRef]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).
[CrossRef]

Y. Z. Huang and Y. D. Yang, “Calculation of light delay for coupled microrings by FDTD technique and Padé approximation,” J. Opt. Soc. Am. A 11, 2419-2426 (2009).

Kobayashi, N.

S. Ando, N. Kobayashi, and H. Ando, “Novel hexagonal-facet GaAs/AlGaAs lasers grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 32, 1293-1296 (1993).
[CrossRef]

Köhler, K.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Li, J. J.

Li, W. J.

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Lu, Q. Y.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far field emission for square resonator,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Nosich, A. I.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41, 857-862 (2005).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Schomerus, H.

J. Wiersig and H. Schomerus, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 77, 031802 (2006).
[CrossRef]

H. Schomerus, J. Wiersig, and M. Hentschel, “Optomechanical probes of resonances in amplifying microresonators,” Phys. Rev. A 70, 012703 (2004).
[CrossRef]

Sewell, P.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41, 857-862 (2005).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).

Wang, J. X.

Wang, S. J.

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, and Y. Du, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170-2172 (2008).
[CrossRef] [PubMed]

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Wiersig, J.

J. Wiersig and H. Schomerus, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 77, 031802 (2006).
[CrossRef]

H. Schomerus, J. Wiersig, and M. Hentschel, “Optomechanical probes of resonances in amplifying microresonators,” Phys. Rev. A 70, 012703 (2004).
[CrossRef]

Yang, Y. D.

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, and Y. Du, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170-2172 (2008).
[CrossRef] [PubMed]

Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76, 023822 (2007).
[CrossRef]

Y. Z. Huang and Y. D. Yang, “Calculation of light delay for coupled microrings by FDTD technique and Padé approximation,” J. Opt. Soc. Am. A 11, 2419-2426 (2009).

Yu, L. J.

Q. Chen, Y. Z. Huang, and L. J. Yu, “Analysis of mode characteristics for deformed square resonators by FDTD technique,” IEEE J. Quantum Electron. 42, 59-63 (2006).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far field emission for square resonator,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of mode quality factors for equilateral triangle semiconductor microlasers with rough sidewalls,” Chin. Phys. Lett. 19, 674-676 (2002).
[CrossRef]

Zhao, W.

Appl. Phys. Lett. (3)

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

Y. Z. Huang, W. H. Guo, and L. J. Yu, “Analysis of mode quality factors for equilateral triangle semiconductor microlasers with rough sidewalls,” Chin. Phys. Lett. 19, 674-676 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41, 857-862 (2005).
[CrossRef]

Q. Chen, Y. Z. Huang, and L. J. Yu, “Analysis of mode characteristics for deformed square resonators by FDTD technique,” IEEE J. Quantum Electron. 42, 59-63 (2006).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far field emission for square resonator,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Y. Z. Huang and Y. D. Yang, “Calculation of light delay for coupled microrings by FDTD technique and Padé approximation,” J. Opt. Soc. Am. A 11, 2419-2426 (2009).

Jpn. J. Appl. Phys. (1)

S. Ando, N. Kobayashi, and H. Ando, “Novel hexagonal-facet GaAs/AlGaAs lasers grown by selective area metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 32, 1293-1296 (1993).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (3)

Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76, 023822 (2007).
[CrossRef]

H. Schomerus, J. Wiersig, and M. Hentschel, “Optomechanical probes of resonances in amplifying microresonators,” Phys. Rev. A 70, 012703 (2004).
[CrossRef]

J. Wiersig and H. Schomerus, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 77, 031802 (2006).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Mode frequencies and Q factors versus the hole diameter for TM e 0 , 12 and TM o 0 , 12 modes in a 3     μ m side triangle cavity. The solid and open symbols are mode frequencies and Q factors, respectively, and the inset shows a schematic diagram of a triangle resonator with a circle hole at the center.

Fig. 2
Fig. 2

Mode frequencies and Q factors versus the hole diameter for (a) TM o 4 , 6 and TM o 5 , 7 and (b) TM o 3 , 5 in the 2     μ m side square resonator. The solid and open symbols are mode frequencies and Q factors, respectively, and the inset is a schematic diagram of the square resonator with a center circle hole.

Fig. 3
Fig. 3

Field distribution of E z for TM o 3 , 5 mode in the 2     μ m side square resonator with the diameter of the center hole of (a) 0, (b) 0.4, and (c) 0.8 μ m , respectively, obtained by 2D FDTD simulations. The solid lines indicate the positions of the square resonator and the hole.

Fig. 4
Fig. 4

Power angular spectra for TM o 3 , 5 mode in the 2     μ m side square resonator. The solid, dashed, and dotted lines correspond to the square resonator with 0, 0.4, and 0.8 μ m diameter hole, respectively.

Fig. 5
Fig. 5

Output coupling efficient and the Q factor of the TM o 11 , 15 mode versus the diameter of the center hole for the 4     μ m side square microcavity with a 0.6     μ m wide output waveguide.

Fig. 6
Fig. 6

Field distribution of E z for TM o 11 , 15 mode in the 4     μ m side square resonator with a 0.6     μ m wide output waveguide and a 0.48     μ m diameter center hole.

Fig. 7
Fig. 7

Field distribution of E z for (a) TM o 9 , 1 and (b) TM e 9 , 1 in a 1     μ m side hexagonal resonator without the center hole.

Fig. 8
Fig. 8

Intensity spectra for a 1     μ m side hexagonal resonator obtained by the FDTD simulation and Padé approximation. The diameters of the hole in the center are (a) 0.6, 0.76, and 0.8 μ m and (b) 1, 1.04, and 1.08 μ m , respectively.

Fig. 9
Fig. 9

(a) Mode frequency and (b) Q factors versus the hole diameter in the 1     μ m side hexagonal resonator. The circular and square symbols correspond to the “o” and “e” states. The dashed line is the Q factor of TM e 9 , 1 obtained by the FDTD simulation with the mesh cell of 5 nm .

Fig. 10
Fig. 10

Field distribution of E z for (a) TM o 9 , 1 at the hole diameter 1.08 μ m and (b) TM e 9 , 1 at the hole diameter 1     μ m , in the 1     μ m side hexagonal resonator.

Fig. 11
Fig. 11

Intensity spectra obtained by FDTD simulation and Padé approximation with the narrow and wide bandwidth exciting sources plotted as the dashed and solid lines for the 2     μ m side square resonator, respectively. The inset shows the magnified main peaks around 150 THz .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ( x 0 , y 0 , t ) = exp [ ( t t 0 ) 2 t w 2 ] cos ( 2 π f 0 t ) ,
F z ( r ) = exp ( j k r ) r K ( φ ) ,
K ( φ ) = exp ( 3 j π 4 ) 8 π k C n [ F z ( r ) n j k F z ( r ) n r ̂ ] exp ( j k r r ̂ ) d C ,

Metrics