Abstract

We show how the quantum Zeno effect can be exploited to implement the CNOT gate in two separated cavities with two atomic four-level tripod systems. In respective subspaces of the total Hilbert space, the evolution of the quantum system exhibits different dynamical properties due to the continuous coupling between atoms and cavities. The strictly numerical simulation reveals that a high average gate fidelity can be obtained in the presence of decoherence.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756-763 (1977).
    [CrossRef]
  2. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763-4766 (1995).
    [CrossRef] [PubMed]
  3. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41, 2295-2300 (1990).
    [CrossRef] [PubMed]
  4. J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
    [CrossRef] [PubMed]
  5. E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
    [CrossRef]
  6. P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12-19 (2000).
    [CrossRef]
  7. P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, p. 147.
  8. P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
    [CrossRef] [PubMed]
  9. A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762-1765 (2000).
    [CrossRef] [PubMed]
  10. J. Pachos and H. Walther, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
    [CrossRef] [PubMed]
  11. H. Azuma, “Interaction-free generation of entanglement,” Phys. Rev. A 68, 022320 (2003).
    [CrossRef]
  12. J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A 70, 062302 (2004).
    [CrossRef]
  13. O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature 439, 04523 (2006).
    [CrossRef]
  14. J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B 24, 209-213 (2007).
    [CrossRef]
  15. C. R. Myers and A. Gilchrist, “Photon-loss-tolerant Zeno controlled-sign gate,” Phys. Rev. A 75, 052339 (2007).
    [CrossRef]
  16. X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339 (2008).
    [CrossRef]
  17. Y. P. Huang and M. G. Moore, “Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits,” Phys. Rev. A 77, 062332 (2008).
    [CrossRef]
  18. K. J. Xu, Y. P. Huang, M. G. Moore, and C. Piermarocchi, “Zeno quantum gates in semiconductor quantum dots,” arXiv. org e-print, 0810.4489v1, 24 October 2008, http://arxiv.org/abs/0810.4489v1.
  19. T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997).
    [CrossRef]
  20. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [CrossRef] [PubMed]
  21. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
    [CrossRef]
  22. J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Euro. Phys. Lett. 80, 60001 (2007).
    [CrossRef]
  23. P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
    [CrossRef]
  24. L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
    [CrossRef]
  25. X. Y. Lü, L. G. Si, M. Wang, S. Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B 41, 235502 (2008).
    [CrossRef]
  26. P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” arXiv.org:e-print, 0711.4280v2, 20 March 2009, http://arxiv.org/abs/0711.4280v2.
  27. M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation,” Phys. Lett. A 303, 249-252 (2002).
    [CrossRef]
  28. A. G. White, A. Gilchrist, G. J. Pryde, J. L. O'Brien, M. J. Bremner, and N. K. Langford, “Measuring two-qubit gates,” J. Opt. Soc. Am. B 24, 172-183 (2007).
    [CrossRef]
  29. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
    [CrossRef]

2008 (4)

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339 (2008).
[CrossRef]

Y. P. Huang and M. G. Moore, “Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits,” Phys. Rev. A 77, 062332 (2008).
[CrossRef]

X. Y. Lü, L. G. Si, M. Wang, S. Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B 41, 235502 (2008).
[CrossRef]

2007 (7)

A. G. White, A. Gilchrist, G. J. Pryde, J. L. O'Brien, M. J. Bremner, and N. K. Langford, “Measuring two-qubit gates,” J. Opt. Soc. Am. B 24, 172-183 (2007).
[CrossRef]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Euro. Phys. Lett. 80, 60001 (2007).
[CrossRef]

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[CrossRef]

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B 24, 209-213 (2007).
[CrossRef]

C. R. Myers and A. Gilchrist, “Photon-loss-tolerant Zeno controlled-sign gate,” Phys. Rev. A 75, 052339 (2007).
[CrossRef]

2006 (3)

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature 439, 04523 (2006).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
[CrossRef]

2005 (1)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

2004 (1)

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A 70, 062302 (2004).
[CrossRef]

2003 (1)

H. Azuma, “Interaction-free generation of entanglement,” Phys. Rev. A 68, 022320 (2003).
[CrossRef]

2002 (3)

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[CrossRef] [PubMed]

J. Pachos and H. Walther, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
[CrossRef] [PubMed]

M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation,” Phys. Lett. A 303, 249-252 (2002).
[CrossRef]

2000 (2)

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762-1765 (2000).
[CrossRef] [PubMed]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12-19 (2000).
[CrossRef]

1997 (1)

T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997).
[CrossRef]

1995 (1)

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763-4766 (1995).
[CrossRef] [PubMed]

1990 (1)

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41, 2295-2300 (1990).
[CrossRef] [PubMed]

1977 (1)

B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756-763 (1977).
[CrossRef]

Azuma, H.

H. Azuma, “Interaction-free generation of entanglement,” Phys. Rev. A 68, 022320 (2003).
[CrossRef]

Barreiro, J. T.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature 439, 04523 (2006).
[CrossRef]

Beige, A.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762-1765 (2000).
[CrossRef] [PubMed]

Bernu, J.

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

Bollinger, J. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41, 2295-2300 (1990).
[CrossRef] [PubMed]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

Boyd, M.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
[CrossRef]

Braun, D.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762-1765 (2000).
[CrossRef] [PubMed]

Bremner, M. J.

Brune, M.

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

Campbell, G. K.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
[CrossRef]

Chen, L. B.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Deléglise, S.

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

Dotsenko, I.

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

Du, Q. H.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Facchi, P.

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[CrossRef] [PubMed]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12-19 (2000).
[CrossRef]

P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, p. 147.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” arXiv.org:e-print, 0711.4280v2, 20 March 2009, http://arxiv.org/abs/0711.4280v2.

Franson, J. D.

J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B 24, 209-213 (2007).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A 70, 062302 (2004).
[CrossRef]

Gilchrist, A.

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Gorini, V.

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12-19 (2000).
[CrossRef]

Guo, J. L.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Euro. Phys. Lett. 80, 60001 (2007).
[CrossRef]

Haroche, S.

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

Heinzen, D. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41, 2295-2300 (1990).
[CrossRef] [PubMed]

Herzog, T.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763-4766 (1995).
[CrossRef] [PubMed]

Hosten, O.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature 439, 04523 (2006).
[CrossRef]

Huang, Y. P.

Y. P. Huang and M. G. Moore, “Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits,” Phys. Rev. A 77, 062332 (2008).
[CrossRef]

K. J. Xu, Y. P. Huang, M. G. Moore, and C. Piermarocchi, “Zeno quantum gates in semiconductor quantum dots,” arXiv. org e-print, 0810.4489v1, 24 October 2008, http://arxiv.org/abs/0810.4489v1.

Itano, W. M.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41, 2295-2300 (1990).
[CrossRef] [PubMed]

Jacobs, B. C.

J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B 24, 209-213 (2007).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A 70, 062302 (2004).
[CrossRef]

Kasevich, M. A.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763-4766 (1995).
[CrossRef] [PubMed]

Ketterle, W.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
[CrossRef]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Knight, P. L.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762-1765 (2000).
[CrossRef] [PubMed]

Kuhr, S.

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

Kwiat, P.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763-4766 (1995).
[CrossRef] [PubMed]

Kwiat, P. G.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature 439, 04523 (2006).
[CrossRef]

Langford, N. K.

Li, F. L.

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[CrossRef]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

Lin, G. W.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Lin, X. M.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Lü, X. Y.

X. Y. Lü, L. G. Si, M. Wang, S. Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B 41, 235502 (2008).
[CrossRef]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

Marmo, G.

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12-19 (2000).
[CrossRef]

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” arXiv.org:e-print, 0711.4280v2, 20 March 2009, http://arxiv.org/abs/0711.4280v2.

Medley, P.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
[CrossRef]

Misra, B.

B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756-763 (1977).
[CrossRef]

Moore, M. G.

Y. P. Huang and M. G. Moore, “Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits,” Phys. Rev. A 77, 062332 (2008).
[CrossRef]

K. J. Xu, Y. P. Huang, M. G. Moore, and C. Piermarocchi, “Zeno quantum gates in semiconductor quantum dots,” arXiv. org e-print, 0810.4489v1, 24 October 2008, http://arxiv.org/abs/0810.4489v1.

Mun, J.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
[CrossRef]

Myers, C. R.

C. R. Myers and A. Gilchrist, “Photon-loss-tolerant Zeno controlled-sign gate,” Phys. Rev. A 75, 052339 (2007).
[CrossRef]

Nie, J.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Euro. Phys. Lett. 80, 60001 (2007).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation,” Phys. Lett. A 303, 249-252 (2002).
[CrossRef]

Nori, F.

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339 (2008).
[CrossRef]

O'Brien, J. L.

Pachos, J.

J. Pachos and H. Walther, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
[CrossRef] [PubMed]

Pascazio, S.

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[CrossRef] [PubMed]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12-19 (2000).
[CrossRef]

P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, p. 147.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” arXiv.org:e-print, 0711.4280v2, 20 March 2009, http://arxiv.org/abs/0711.4280v2.

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997).
[CrossRef]

Peng, P.

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[CrossRef]

Peters, N. A.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature 439, 04523 (2006).
[CrossRef]

Piermarocchi, C.

K. J. Xu, Y. P. Huang, M. G. Moore, and C. Piermarocchi, “Zeno quantum gates in semiconductor quantum dots,” arXiv. org e-print, 0810.4489v1, 24 October 2008, http://arxiv.org/abs/0810.4489v1.

Pittman, T. B.

J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B 24, 209-213 (2007).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A 70, 062302 (2004).
[CrossRef]

Pritchard, D. E.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
[CrossRef]

Pryde, G. J.

Raimond, J. M.

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

Rakher, M. T.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature 439, 04523 (2006).
[CrossRef]

Sayrin, C.

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

Si, L. G.

X. Y. Lü, L. G. Si, M. Wang, S. Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B 41, 235502 (2008).
[CrossRef]

Song, H. S.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Euro. Phys. Lett. 80, 60001 (2007).
[CrossRef]

Song, J.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Euro. Phys. Lett. 80, 60001 (2007).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Streed, E. W.

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
[CrossRef]

Sudarshan, E. C. G.

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12-19 (2000).
[CrossRef]

B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756-763 (1977).
[CrossRef]

Tregenna, B.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762-1765 (2000).
[CrossRef] [PubMed]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Walther, H.

J. Pachos and H. Walther, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
[CrossRef] [PubMed]

Wang, M.

X. Y. Lü, L. G. Si, M. Wang, S. Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B 41, 235502 (2008).
[CrossRef]

Wang, X. B.

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339 (2008).
[CrossRef]

Weinfurter, H.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763-4766 (1995).
[CrossRef] [PubMed]

White, A. G.

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Wineland, D. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41, 2295-2300 (1990).
[CrossRef] [PubMed]

Wolf, E.

P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, p. 147.

Xia, Y.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Euro. Phys. Lett. 80, 60001 (2007).
[CrossRef]

Xu, K. J.

K. J. Xu, Y. P. Huang, M. G. Moore, and C. Piermarocchi, “Zeno quantum gates in semiconductor quantum dots,” arXiv. org e-print, 0810.4489v1, 24 October 2008, http://arxiv.org/abs/0810.4489v1.

Yang, X.

X. Y. Lü, L. G. Si, M. Wang, S. Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B 41, 235502 (2008).
[CrossRef]

Ye, M. Y.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Yin, Z. Q.

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

You, J. Q.

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339 (2008).
[CrossRef]

Zeilinger, A.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763-4766 (1995).
[CrossRef] [PubMed]

Zhang, S. Z.

X. Y. Lü, L. G. Si, M. Wang, S. Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B 41, 235502 (2008).
[CrossRef]

Euro. Phys. Lett. (1)

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Euro. Phys. Lett. 80, 60001 (2007).
[CrossRef]

J. Math. Phys. (1)

B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756-763 (1977).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

X. Y. Lü, L. G. Si, M. Wang, S. Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B 41, 235502 (2008).
[CrossRef]

Nature (1)

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature 439, 04523 (2006).
[CrossRef]

Phys. Lett. A (2)

M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation,” Phys. Lett. A 303, 249-252 (2002).
[CrossRef]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12-19 (2000).
[CrossRef]

Phys. Rev. A (10)

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41, 2295-2300 (1990).
[CrossRef] [PubMed]

C. R. Myers and A. Gilchrist, “Photon-loss-tolerant Zeno controlled-sign gate,” Phys. Rev. A 75, 052339 (2007).
[CrossRef]

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339 (2008).
[CrossRef]

Y. P. Huang and M. G. Moore, “Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits,” Phys. Rev. A 77, 062332 (2008).
[CrossRef]

H. Azuma, “Interaction-free generation of entanglement,” Phys. Rev. A 68, 022320 (2003).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A 70, 062302 (2004).
[CrossRef]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[CrossRef]

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Phys. Rev. Lett. (8)

T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

J. Bernu, S. Deléglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, and S. Haroche, “Freezing a coherent field growth in a cavity by quantum Zeno effect,” Phys. Rev. Lett. 101, 180402 (2008).
[CrossRef] [PubMed]

E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, “Continuous and pulsed quantum Zeno effect,” Phys. Rev. Lett. 97, 260402 (2006).
[CrossRef]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763-4766 (1995).
[CrossRef] [PubMed]

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[CrossRef] [PubMed]

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762-1765 (2000).
[CrossRef] [PubMed]

J. Pachos and H. Walther, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002).
[CrossRef] [PubMed]

Other (3)

P. Facchi and S. Pascazio, Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, p. 147.

K. J. Xu, Y. P. Huang, M. G. Moore, and C. Piermarocchi, “Zeno quantum gates in semiconductor quantum dots,” arXiv. org e-print, 0810.4489v1, 24 October 2008, http://arxiv.org/abs/0810.4489v1.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” arXiv.org:e-print, 0711.4280v2, 20 March 2009, http://arxiv.org/abs/0711.4280v2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two tripod-type atoms are trapped in two spatially separated cavities A and B, respectively, linked through an optical fiber. The level | L A ( B ) and | e A ( B ) is coupled resonantly to the cavity mode with the coupling constants λ 1 ( 2 ) , and the level | L B and | g 1 ( 2 ) B is coupled to the classical field with the coupling strength Ω 1 ( 2 ) . The qubits are encoded in the subspace { | g 1 A , | e A , | g 1 B , | g 2 B }.

Fig. 2
Fig. 2

The average gate fidelity versus the ratio Ω λ . Other parameter: λ = η .

Fig. 3
Fig. 3

The average gate fidelity versus the decoherence parameters κ λ , κ f λ , and γ λ , respectively.

Fig. 4
Fig. 4

Comparison between ideal and practical process χ matrices of the CNOT gate. The chi overlap is T r ( χ i d χ p r ) = 96.52 % .

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

U CNOT = | 0 , 0 A B 0 , 0 | + | 0 , 1 A B 0 , 1 | + | 1 , 1 A B 1 , 0 | + | 1 , 0 A B 1 , 1 | ,
H total = H I + H laser ,
H I = λ 1 ( a | L A A e | + | e A A L | a ) + λ 2 ( b | L B B e | + | e B B L | b ) + η [ f ( a + b ) + ( a + b ) f ] ,
H laser = Ω 1 ( | L B B g 1 | + | g 1 B B L | ) + Ω 2 ( | L B B g 2 | + | g 2 B B L | ) ,
| a , 00 = 1 λ 2 + 2 η 2 [ η ( | e L 0 + | L e 0 ) λ | e e 1 ] A B f | 00 a b ,
| b , 00 = 1 λ 2 + 2 η 2 [ 2 2 λ ( | e L 0 + | L e 0 ) + 2 η | e e 1 ] A B f | 00 a b ,
| c , 00 = 1 2 ( | e L 0 | L e 0 ) A B f | 00 a b ,
g 1 g 1 0 | 00 | = ( 1 , 0 , 0 , 0 , 0 , 0 ) , g 1 L 0 | 00 | = ( 0 , 1 , 0 , 0 , 0 , 0 ) , g 1 g 2 0 | 00 | = ( 0 , 0 , 1 , 0 , 0 , 0 ) ,
g 1 e 0 | 01 | = ( 0 , 0 , 0 , 1 , 0 , 0 ) , g 1 e 1 | 00 | = ( 0 , 0 , 0 , 0 , 1 , 0 ) , g 1 e 0 | 10 | = ( 0 , 0 , 0 , 0 , 0 , 1 ) ,
H 1 = ( 0 Ω 1 0 0 0 0 Ω 1 0 Ω 2 λ 0 0 0 Ω 2 0 0 0 0 0 λ 0 0 η 0 0 0 0 η 0 η 0 0 0 0 η 0 ) = ( 0 Ω 1 0 0 0 0 Ω 1 0 Ω 2 0 0 0 0 Ω 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) + ( 0 0 0 0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0 0 λ 0 0 η 0 0 0 0 η 0 η 0 0 0 0 η 0 ) ,
H 1 = n χ n P n + P n ( 0 Ω 1 0 0 0 0 Ω 1 0 Ω 2 0 0 0 0 Ω 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) P n = ( 0 0 0 0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0 0 λ 0 0 η 0 0 0 0 η 0 η 0 0 0 0 η 0 ) ,
e g 1 0 | 00 | = ( 1 , 0 , 0 , 0 , 0 , 0 , 0 ) , a | 00 | = ( 0 , 1 , 0 , 0 , 0 , 0 , 0 ) , b | 00 | = ( 0 , 0 , 1 , 0 , 0 , 0 , 0 ) ,
c | 00 | = ( 0 , 0 , 0 , 1 , 0 , 0 , 0 ) , e g 2 0 | 00 | = ( 0 , 0 , 0 , 0 , 1 , 0 , 0 ) , e e 0 | 10 | = ( 0 , 0 , 0 , 0 , 0 , 1 , 0 ) ,
e e 0 | 01 | = ( 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ,
H 2 = ( 0 η Ω 1 λ 2 + 2 η 2 2 λ Ω 1 2 λ 2 + 2 η 2 2 Ω 1 2 0 0 0 η Ω 1 λ 2 + 2 η 2 0 0 0 η Ω 2 λ 2 + 2 η 2 0 0 2 λ Ω 1 2 λ 2 + 2 η 2 0 0 0 2 λ Ω 2 2 λ 2 + 2 η 2 2 ( λ 2 + 2 2 η 2 ) 2 λ 2 + 2 η 2 2 ( λ 2 + 2 2 η 2 ) 2 λ 2 + 2 η 2 2 Ω 1 2 0 0 0 2 Ω 2 2 2 λ 2 2 λ 2 0 η Ω 2 λ 2 + 2 η 2 2 λ Ω 2 2 λ 2 + 2 η 2 2 Ω 2 2 0 0 0 0 0 2 ( λ 2 + 2 2 η 2 ) 2 λ 2 + 2 η 2 2 λ 2 0 0 0 0 0 2 ( λ 2 + 2 2 η 2 ) 2 λ 2 + 2 η 2 2 λ 2 0 0 0 ) ( 0 η Ω 1 λ 2 + 2 η 2 0 0 0 0 0 η Ω 1 λ 2 + 2 η 2 0 0 0 η Ω 2 λ 2 + 2 η 2 0 0 0 0 0 0 0 2 ( λ 2 + 2 2 η 2 ) 2 λ 2 + 2 η 2 2 ( λ 2 + 2 2 η 2 ) 2 λ 2 + 2 η 2 0 0 0 0 0 2 λ 2 2 λ 2 0 η Ω 2 λ 2 + 2 η 2 0 0 0 0 0 0 0 2 ( λ 2 + 2 2 η 2 ) 2 λ 2 + 2 η 2 2 λ 2 0 0 0 0 0 2 ( λ 2 + 2 2 η 2 ) 2 λ 2 + 2 η 2 2 λ 2 0 0 0 ) ,
H eff = η λ 2 + 2 η 2 [ ( Ω 1 | e g 1 0 , 00 + Ω 2 | e g 2 0 , 00 ) a , 00 | + H.c. ] .
F ¯ ( ε , U ) = j tr ( U U j U ε ( U j ) ) + d 2 d 2 ( d + 1 ) ,
ρ ̇ = i [ H total , ρ ] κ a 2 ( a a ρ 2 a ρ a + ρ a a ) κ b 2 ( b b ρ 2 b ρ b + ρ b b ) κ f 2 ( f f ρ 2 f ρ f + ρ f f ) j = g 1 , g 2 , e [ γ A L j 2 ( σ L L A ρ 2 σ j L A ρ σ L j A + ρ σ L L A ) + γ B L j 2 ( σ L L B ρ 2 σ j L B ρ σ L j B + ρ σ L L B ) ] ,

Metrics