Abstract

The laser pulse width is the limiting factor for high spatial resolution measurement with a Raman distributed temperature sensor (RDTS). A 5ns laser pulse from a RDTS system has a spatial resolution of 1m. A methodology is proposed to improve this spatial resolution limit.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rogers, “Distributed optical-fiber sensing,” Meas. Sci. Technol. 10, R75-R99 (1999)
    [CrossRef]
  2. A. Kimura, “Application of a Raman distributed temperature sensor to the experimental fast reactor JOYO with correction techniques,” Meas. Sci. Technol. 12, 966-973 (2001).
  3. P. Healey, “Instrumentation principles for optical time-domain reflectometry,” J. Phys. E 19, 334-341 (1986).
    [CrossRef]
  4. D. A. Thorncraft, M. G. Sceats, and S. B. Poole, “An ultra high resolution distributed temperature sensor,” in IEEE Eighth Optical Fiber Sensors Conference (OFC) (IEEE, 1992), pp. 258-261.
  5. K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1 cm spatial resolution by correlation based continuous wave technique,” Philos. Trans. R. Soc. London 14, 179-181 (2002).
  6. P. Healey and P. Hensel, “Optical time domain reflectometry by photon counting,” Electron. Lett. 16, 631-633 (1980).
    [CrossRef]
  7. R. Stierlin, J. Ricka, B. Zysset, R. Bättig, H. P. Weber, T. Binkert, and W. J. Borer, “Distributed fiber-optic temperature sensor using single photon counting detection,” Appl. Opt. 26, 1368-1370 (1987)
    [CrossRef] [PubMed]
  8. R. Faced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772-3776 (1997)
    [CrossRef]
  9. M. Höbel, J. Ricka, M. Wüthrich, and Th. Binkert, “High resolution distributed temperature sensing with the multi photon timing counting” Appl. Opt. 34, 2955-2967 (1995).
    [CrossRef] [PubMed]
  10. I. V. Denisov, O. T. Kamenev, A. Yu. Kim, Yu. N. Kulchin, and A. V. Panov, “Neural data processing method for fiber-optic distributed measuring systems,” Opt. Mem. Neural Networks 12, 165-172 (2003).
  11. Yu. N. Kilchin and A. V. Panov, “Neural network for reconstruction of signal from distributed measuring system of optical amplitude sensors,” Pacific Science Review 3, 1-4 (2001).
  12. S. Chi, C.-C. Lee, and P.-W. Chiang, “Method of enhancing spatial resolution for distributed temperature measurement,” US patent 6,817,759 (B2, 2004).

2003 (1)

I. V. Denisov, O. T. Kamenev, A. Yu. Kim, Yu. N. Kulchin, and A. V. Panov, “Neural data processing method for fiber-optic distributed measuring systems,” Opt. Mem. Neural Networks 12, 165-172 (2003).

2002 (1)

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1 cm spatial resolution by correlation based continuous wave technique,” Philos. Trans. R. Soc. London 14, 179-181 (2002).

2001 (2)

A. Kimura, “Application of a Raman distributed temperature sensor to the experimental fast reactor JOYO with correction techniques,” Meas. Sci. Technol. 12, 966-973 (2001).

Yu. N. Kilchin and A. V. Panov, “Neural network for reconstruction of signal from distributed measuring system of optical amplitude sensors,” Pacific Science Review 3, 1-4 (2001).

1999 (1)

A. Rogers, “Distributed optical-fiber sensing,” Meas. Sci. Technol. 10, R75-R99 (1999)
[CrossRef]

1997 (1)

R. Faced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772-3776 (1997)
[CrossRef]

1995 (1)

1987 (1)

1986 (1)

P. Healey, “Instrumentation principles for optical time-domain reflectometry,” J. Phys. E 19, 334-341 (1986).
[CrossRef]

1980 (1)

P. Healey and P. Hensel, “Optical time domain reflectometry by photon counting,” Electron. Lett. 16, 631-633 (1980).
[CrossRef]

Bättig, R.

Binkert, T.

Binkert, Th.

Borer, W. J.

Chi, S.

S. Chi, C.-C. Lee, and P.-W. Chiang, “Method of enhancing spatial resolution for distributed temperature measurement,” US patent 6,817,759 (B2, 2004).

Chiang, P.-W.

S. Chi, C.-C. Lee, and P.-W. Chiang, “Method of enhancing spatial resolution for distributed temperature measurement,” US patent 6,817,759 (B2, 2004).

Denisov, I. V.

I. V. Denisov, O. T. Kamenev, A. Yu. Kim, Yu. N. Kulchin, and A. V. Panov, “Neural data processing method for fiber-optic distributed measuring systems,” Opt. Mem. Neural Networks 12, 165-172 (2003).

Faced, R.

R. Faced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772-3776 (1997)
[CrossRef]

Farhadiroushan, M.

R. Faced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772-3776 (1997)
[CrossRef]

Handerek, V. A.

R. Faced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772-3776 (1997)
[CrossRef]

Healey, P.

P. Healey, “Instrumentation principles for optical time-domain reflectometry,” J. Phys. E 19, 334-341 (1986).
[CrossRef]

P. Healey and P. Hensel, “Optical time domain reflectometry by photon counting,” Electron. Lett. 16, 631-633 (1980).
[CrossRef]

Hensel, P.

P. Healey and P. Hensel, “Optical time domain reflectometry by photon counting,” Electron. Lett. 16, 631-633 (1980).
[CrossRef]

Höbel, M.

Hotate, K.

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1 cm spatial resolution by correlation based continuous wave technique,” Philos. Trans. R. Soc. London 14, 179-181 (2002).

Kamenev, O. T.

I. V. Denisov, O. T. Kamenev, A. Yu. Kim, Yu. N. Kulchin, and A. V. Panov, “Neural data processing method for fiber-optic distributed measuring systems,” Opt. Mem. Neural Networks 12, 165-172 (2003).

Kilchin, Yu. N.

Yu. N. Kilchin and A. V. Panov, “Neural network for reconstruction of signal from distributed measuring system of optical amplitude sensors,” Pacific Science Review 3, 1-4 (2001).

Kimura, A.

A. Kimura, “Application of a Raman distributed temperature sensor to the experimental fast reactor JOYO with correction techniques,” Meas. Sci. Technol. 12, 966-973 (2001).

Kulchin, Yu. N.

I. V. Denisov, O. T. Kamenev, A. Yu. Kim, Yu. N. Kulchin, and A. V. Panov, “Neural data processing method for fiber-optic distributed measuring systems,” Opt. Mem. Neural Networks 12, 165-172 (2003).

Lee, C.-C.

S. Chi, C.-C. Lee, and P.-W. Chiang, “Method of enhancing spatial resolution for distributed temperature measurement,” US patent 6,817,759 (B2, 2004).

Panov, A. V.

I. V. Denisov, O. T. Kamenev, A. Yu. Kim, Yu. N. Kulchin, and A. V. Panov, “Neural data processing method for fiber-optic distributed measuring systems,” Opt. Mem. Neural Networks 12, 165-172 (2003).

Yu. N. Kilchin and A. V. Panov, “Neural network for reconstruction of signal from distributed measuring system of optical amplitude sensors,” Pacific Science Review 3, 1-4 (2001).

Poole, S. B.

D. A. Thorncraft, M. G. Sceats, and S. B. Poole, “An ultra high resolution distributed temperature sensor,” in IEEE Eighth Optical Fiber Sensors Conference (OFC) (IEEE, 1992), pp. 258-261.

Ricka, J.

Rogers, A.

A. Rogers, “Distributed optical-fiber sensing,” Meas. Sci. Technol. 10, R75-R99 (1999)
[CrossRef]

Rogers, A. J.

R. Faced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772-3776 (1997)
[CrossRef]

Sceats, M. G.

D. A. Thorncraft, M. G. Sceats, and S. B. Poole, “An ultra high resolution distributed temperature sensor,” in IEEE Eighth Optical Fiber Sensors Conference (OFC) (IEEE, 1992), pp. 258-261.

Stierlin, R.

Tanaka, M.

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1 cm spatial resolution by correlation based continuous wave technique,” Philos. Trans. R. Soc. London 14, 179-181 (2002).

Thorncraft, D. A.

D. A. Thorncraft, M. G. Sceats, and S. B. Poole, “An ultra high resolution distributed temperature sensor,” in IEEE Eighth Optical Fiber Sensors Conference (OFC) (IEEE, 1992), pp. 258-261.

Weber, H. P.

Wüthrich, M.

Yu. Kim, A.

I. V. Denisov, O. T. Kamenev, A. Yu. Kim, Yu. N. Kulchin, and A. V. Panov, “Neural data processing method for fiber-optic distributed measuring systems,” Opt. Mem. Neural Networks 12, 165-172 (2003).

Zysset, B.

Appl. Opt. (2)

Electron. Lett. (1)

P. Healey and P. Hensel, “Optical time domain reflectometry by photon counting,” Electron. Lett. 16, 631-633 (1980).
[CrossRef]

J. Phys. E (1)

P. Healey, “Instrumentation principles for optical time-domain reflectometry,” J. Phys. E 19, 334-341 (1986).
[CrossRef]

Meas. Sci. Technol. (2)

A. Rogers, “Distributed optical-fiber sensing,” Meas. Sci. Technol. 10, R75-R99 (1999)
[CrossRef]

A. Kimura, “Application of a Raman distributed temperature sensor to the experimental fast reactor JOYO with correction techniques,” Meas. Sci. Technol. 12, 966-973 (2001).

Opt. Mem. Neural Networks (1)

I. V. Denisov, O. T. Kamenev, A. Yu. Kim, Yu. N. Kulchin, and A. V. Panov, “Neural data processing method for fiber-optic distributed measuring systems,” Opt. Mem. Neural Networks 12, 165-172 (2003).

Pacific Science Review (1)

Yu. N. Kilchin and A. V. Panov, “Neural network for reconstruction of signal from distributed measuring system of optical amplitude sensors,” Pacific Science Review 3, 1-4 (2001).

Philos. Trans. R. Soc. London (1)

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1 cm spatial resolution by correlation based continuous wave technique,” Philos. Trans. R. Soc. London 14, 179-181 (2002).

Rev. Sci. Instrum. (1)

R. Faced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772-3776 (1997)
[CrossRef]

Other (2)

D. A. Thorncraft, M. G. Sceats, and S. B. Poole, “An ultra high resolution distributed temperature sensor,” in IEEE Eighth Optical Fiber Sensors Conference (OFC) (IEEE, 1992), pp. 258-261.

S. Chi, C.-C. Lee, and P.-W. Chiang, “Method of enhancing spatial resolution for distributed temperature measurement,” US patent 6,817,759 (B2, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of fiber sensor connected to the RDTS system through a fiber switch, which introduces path length offset between different measurements.

Fig. 2
Fig. 2

(a) Fiber 1 without delay line. (b) Fiber 2 with a delay line of a 0 = L 2 Major division corresponds to temperature measured through the RDTS. Minor division corresponds the spatial resolution to be achieved.

Fig. 3
Fig. 3

Temperature measurement by the RDTS at consecutive positions along the length of the fiber as the heater is moved along the length of the fiber.

Fig. 4
Fig. 4

Temperature measurement by fiber 1 (dotted curve) and fiber 2 (dashed curve). The two scans differ by path length = L 2 . The spatial resolution is 1.02 m .

Fig. 5
Fig. 5

Temperature reconstructed with spatial resolution of 0.51 m . Note error propagation along the length of the fiber.

Fig. 6
Fig. 6

Temperature reconstructed with spatial resolution of 0.51 m after applying a threshold filter (see Fig. 4).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L = c × t 2 n g ,
T 2 = ( 1 2 ) ( θ 1 + θ 2 ) ,
T 4 = ( 1 2 ) ( θ 3 + θ 4 ) .
T 1 = ( 1 2 ) ( θ 0 + θ 1 ) ,
T 3 = ( 1 2 ) ( θ 2 + θ 3 ) .
1 2 ( θ 0 + θ 1 θ 1 + θ 2 θ 2 + θ 3 θ 3 + θ 4 . . . . . . . . θ n 1 + θ n ) = ( T 1 T 2 T 3 T 4 . . . . T n ) .

Metrics