Abstract

The parametric analysis of an active InP-based buried waveguide is proposed to optimize the amplification of the electric field at a given operation wavelength. The waveguide exploits a one-dimensional photonic crystal (PhC), the periodicity of which is perturbed by an active defective region. The analysis of the gain spectrum, as a function of the geometrical and electrical parameters, has been performed using proprietary codes, based on the bidirectional beam propagation method with method of lines, introducing rate equations to take into account the interaction of the matter with the photons. It is shown that the variations in the number of layers of the one-dimensional PhC, of the injection current, and of the length of the active defect strongly influence the behavior of the gain. A simple example of an active photonic switch is proposed as an application of the outlined design criteria.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach (Springer-Verlag, 2006).
  2. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246-1260 (2008).
    [CrossRef]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  5. K. H. Lee, J. H. Baek, I. K. Hwang, Y. H. Lee, G. H. Lee, J. H. Ser, H. D. Kim, and H. E. Shin, “Square-lattice photonic-crystal surface-emitting lasers,” Opt. Express 12, 4136-4143 (2004).
    [CrossRef] [PubMed]
  6. C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005).
    [CrossRef]
  7. H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
    [CrossRef]
  8. H. Scherer, D. Gollub, M. Kamp, and A. Forchel, “Tunable GaInNAs lasers with photonic crystal mirrors,” IEEE Photon. Technol. Lett. 17, 2247-2249 (2005).
    [CrossRef]
  9. S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, “Small, low-loss heterogeneous photonic band-edge laser,” Opt. Express 12, 5356-5361 (2004).
    [CrossRef] [PubMed]
  10. V. Petruzzelli, “Accurate model of InxGa1−xAsyP1−y/InP active waveguides for optimal design of switches,” Int. J. Numer. Model. 16, 105-125 (2003)
    [CrossRef]
  11. A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, and F. Prudenzano, “Design of active switches using an InxGa1−xAsyP1−y/InP heterostructure,” Int. J. Optoelectron. 11, 19-27 (1997).
  12. G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008).
    [CrossRef]
  13. D. Biallo, A. D'Orazio, and V. Petruzzelli, “Enhanced light extraction in Er3+ doped SiO2-TiO2 microcavity embedded in one-dimensional photonic crystal,” J. Non-Cryst. Solids 352, 3823-3828 (2006).
    [CrossRef]
  14. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very low threshold photonic band edge lasers from free-standing triangular photonic crystal slabs,” in Proceedings of Quantum Electronics and Laser Science Conference (2002), p. 75.
  15. H. Ryu, H. G. Park, and Y. H. Lee, “Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization,” IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
    [CrossRef]
  16. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
    [CrossRef]
  17. I. S. Nefedov, V. N. Gusyatnikov, and YuA. Morozov, “Optical gain in one-dimensional photonic band gap structures with n-i-p-i crystal layers,” in Proceedings of International Conference on Transparent Optical Networks (2001), pp. 76-79.
  18. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113-122 (1990).
    [CrossRef]
  19. J. Gerdes, “Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines,” Electron. Lett. 30, 550-551 (1994).
    [CrossRef]
  20. J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAsP diode laser,” IEEE J. Quantum Electron. 19, 1525-1529 (1983).
    [CrossRef]
  21. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107-4121 (1996).
    [CrossRef]

2008 (2)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008).
[CrossRef]

2006 (1)

D. Biallo, A. D'Orazio, and V. Petruzzelli, “Enhanced light extraction in Er3+ doped SiO2-TiO2 microcavity embedded in one-dimensional photonic crystal,” J. Non-Cryst. Solids 352, 3823-3828 (2006).
[CrossRef]

2005 (2)

C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005).
[CrossRef]

H. Scherer, D. Gollub, M. Kamp, and A. Forchel, “Tunable GaInNAs lasers with photonic crystal mirrors,” IEEE Photon. Technol. Lett. 17, 2247-2249 (2005).
[CrossRef]

2004 (2)

2003 (3)

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

V. Petruzzelli, “Accurate model of InxGa1−xAsyP1−y/InP active waveguides for optimal design of switches,” Int. J. Numer. Model. 16, 105-125 (2003)
[CrossRef]

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

2002 (1)

H. Ryu, H. G. Park, and Y. H. Lee, “Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization,” IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

1997 (1)

A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, and F. Prudenzano, “Design of active switches using an InxGa1−xAsyP1−y/InP heterostructure,” Int. J. Optoelectron. 11, 19-27 (1997).

1996 (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

1994 (1)

J. Gerdes, “Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines,” Electron. Lett. 30, 550-551 (1994).
[CrossRef]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

1983 (1)

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAsP diode laser,” IEEE J. Quantum Electron. 19, 1525-1529 (1983).
[CrossRef]

Albert, J. P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Baek, J. H.

Bendickson, J. M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

Biallo, D.

D. Biallo, A. D'Orazio, and V. Petruzzelli, “Enhanced light extraction in Er3+ doped SiO2-TiO2 microcavity embedded in one-dimensional photonic crystal,” J. Non-Cryst. Solids 352, 3823-3828 (2006).
[CrossRef]

Calò, G.

G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008).
[CrossRef]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

Cassagne, D.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

De Sario, M.

G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008).
[CrossRef]

A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, and F. Prudenzano, “Design of active switches using an InxGa1−xAsyP1−y/InP heterostructure,” Int. J. Optoelectron. 11, 19-27 (1997).

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

Demokan, M. S.

C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005).
[CrossRef]

D'Orazio, A.

G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008).
[CrossRef]

D. Biallo, A. D'Orazio, and V. Petruzzelli, “Enhanced light extraction in Er3+ doped SiO2-TiO2 microcavity embedded in one-dimensional photonic crystal,” J. Non-Cryst. Solids 352, 3823-3828 (2006).
[CrossRef]

A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, and F. Prudenzano, “Design of active switches using an InxGa1−xAsyP1−y/InP heterostructure,” Int. J. Optoelectron. 11, 19-27 (1997).

Dowling, J. P.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Ficarella, G.

A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, and F. Prudenzano, “Design of active switches using an InxGa1−xAsyP1−y/InP heterostructure,” Int. J. Optoelectron. 11, 19-27 (1997).

Forchel, A.

H. Scherer, D. Gollub, M. Kamp, and A. Forchel, “Tunable GaInNAs lasers with photonic crystal mirrors,” IEEE Photon. Technol. Lett. 17, 2247-2249 (2005).
[CrossRef]

Gerdes, J.

J. Gerdes, “Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines,” Electron. Lett. 30, 550-551 (1994).
[CrossRef]

Gollub, D.

H. Scherer, D. Gollub, M. Kamp, and A. Forchel, “Tunable GaInNAs lasers with photonic crystal mirrors,” IEEE Photon. Technol. Lett. 17, 2247-2249 (2005).
[CrossRef]

Guillot, G.

L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach (Springer-Verlag, 2006).

Gusyatnikov, V. N.

I. S. Nefedov, V. N. Gusyatnikov, and YuA. Morozov, “Optical gain in one-dimensional photonic band gap structures with n-i-p-i crystal layers,” in Proceedings of International Conference on Transparent Optical Networks (2001), pp. 76-79.

Hwang, I. K.

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Jin, W.

C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Kamp, M.

H. Scherer, D. Gollub, M. Kamp, and A. Forchel, “Tunable GaInNAs lasers with photonic crystal mirrors,” IEEE Photon. Technol. Lett. 17, 2247-2249 (2005).
[CrossRef]

Kim, G. H.

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

Kim, H. D.

Kim, J. S.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very low threshold photonic band edge lasers from free-standing triangular photonic crystal slabs,” in Proceedings of Quantum Electronics and Laser Science Conference (2002), p. 75.

Kim, S. B.

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, “Small, low-loss heterogeneous photonic band-edge laser,” Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

Kim, S. H.

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, “Small, low-loss heterogeneous photonic band-edge laser,” Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

Kim, S. K.

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, “Small, low-loss heterogeneous photonic band-edge laser,” Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

Kwon, S. H.

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, “Small, low-loss heterogeneous photonic band-edge laser,” Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very low threshold photonic band edge lasers from free-standing triangular photonic crystal slabs,” in Proceedings of Quantum Electronics and Laser Science Conference (2002), p. 75.

Le Vassor d'Yerville, M.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Lee, G. H.

Lee, K. H.

Lee, Y. H.

K. H. Lee, J. H. Baek, I. K. Hwang, Y. H. Lee, G. H. Lee, J. H. Ser, H. D. Kim, and H. E. Shin, “Square-lattice photonic-crystal surface-emitting lasers,” Opt. Express 12, 4136-4143 (2004).
[CrossRef] [PubMed]

S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, “Small, low-loss heterogeneous photonic band-edge laser,” Opt. Express 12, 5356-5361 (2004).
[CrossRef] [PubMed]

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

H. Ryu, H. G. Park, and Y. H. Lee, “Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization,” IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very low threshold photonic band edge lasers from free-standing triangular photonic crystal slabs,” in Proceedings of Quantum Electronics and Laser Science Conference (2002), p. 75.

Lee, Y. J.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very low threshold photonic band edge lasers from free-standing triangular photonic crystal slabs,” in Proceedings of Quantum Electronics and Laser Science Conference (2002), p. 75.

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Li, Z.

C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005).
[CrossRef]

Lu, C.

C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005).
[CrossRef]

Manning, J.

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAsP diode laser,” IEEE J. Quantum Electron. 19, 1525-1529 (1983).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Mescia, L.

G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008).
[CrossRef]

Monat, C.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Morozov, YuA.

I. S. Nefedov, V. N. Gusyatnikov, and YuA. Morozov, “Optical gain in one-dimensional photonic band gap structures with n-i-p-i crystal layers,” in Proceedings of International Conference on Transparent Optical Networks (2001), pp. 76-79.

Nefedov, I. S.

I. S. Nefedov, V. N. Gusyatnikov, and YuA. Morozov, “Optical gain in one-dimensional photonic band gap structures with n-i-p-i crystal layers,” in Proceedings of International Conference on Transparent Optical Networks (2001), pp. 76-79.

Olshansky, R.

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAsP diode laser,” IEEE J. Quantum Electron. 19, 1525-1529 (1983).
[CrossRef]

Park, H. G.

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

H. Ryu, H. G. Park, and Y. H. Lee, “Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization,” IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

Pavesi, L.

L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach (Springer-Verlag, 2006).

Petruzzelli, V.

G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008).
[CrossRef]

D. Biallo, A. D'Orazio, and V. Petruzzelli, “Enhanced light extraction in Er3+ doped SiO2-TiO2 microcavity embedded in one-dimensional photonic crystal,” J. Non-Cryst. Solids 352, 3823-3828 (2006).
[CrossRef]

V. Petruzzelli, “Accurate model of InxGa1−xAsyP1−y/InP active waveguides for optimal design of switches,” Int. J. Numer. Model. 16, 105-125 (2003)
[CrossRef]

A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, and F. Prudenzano, “Design of active switches using an InxGa1−xAsyP1−y/InP heterostructure,” Int. J. Optoelectron. 11, 19-27 (1997).

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Prudenzano, F.

G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008).
[CrossRef]

A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, and F. Prudenzano, “Design of active switches using an InxGa1−xAsyP1−y/InP heterostructure,” Int. J. Optoelectron. 11, 19-27 (1997).

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Ryu, H.

H. Ryu, H. G. Park, and Y. H. Lee, “Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization,” IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

Ryu, H. Y.

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very low threshold photonic band edge lasers from free-standing triangular photonic crystal slabs,” in Proceedings of Quantum Electronics and Laser Science Conference (2002), p. 75.

Scalora, M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Scherer, H.

H. Scherer, D. Gollub, M. Kamp, and A. Forchel, “Tunable GaInNAs lasers with photonic crystal mirrors,” IEEE Photon. Technol. Lett. 17, 2247-2249 (2005).
[CrossRef]

Seassal, C.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Ser, J. H.

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

Shin, H. E.

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

Su, C. B.

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAsP diode laser,” IEEE J. Quantum Electron. 19, 1525-1529 (1983).
[CrossRef]

Viktorovitch, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yang, X.

C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005).
[CrossRef]

Zhao, C. L.

C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005).
[CrossRef]

Electron. Lett. (1)

J. Gerdes, “Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines,” Electron. Lett. 30, 550-551 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. Manning, R. Olshansky, and C. B. Su, “The carrier-induced index change in AlGaAsP diode laser,” IEEE J. Quantum Electron. 19, 1525-1529 (1983).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39, 419-425 (2003).
[CrossRef]

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ryu, H. G. Park, and Y. H. Lee, “Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization,” IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier,” IEEE Photon. Technol. Lett. 17, 561-563 (2005).
[CrossRef]

H. G. Park, S. K. Kim, S. H. Kwon, G. H. Kim, S. H. Kim, H. Y. Ryu, S. B. Kim, and Y. H. Lee, “Single-mode operation of two-dimensional photonic crystal laser with central post,” IEEE Photon. Technol. Lett. 15, 1327-1329 (2003).
[CrossRef]

H. Scherer, D. Gollub, M. Kamp, and A. Forchel, “Tunable GaInNAs lasers with photonic crystal mirrors,” IEEE Photon. Technol. Lett. 17, 2247-2249 (2005).
[CrossRef]

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246-1260 (2008).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273-284 (2008).
[CrossRef]

Int. J. Numer. Model. (1)

V. Petruzzelli, “Accurate model of InxGa1−xAsyP1−y/InP active waveguides for optimal design of switches,” Int. J. Numer. Model. 16, 105-125 (2003)
[CrossRef]

Int. J. Optoelectron. (1)

A. D'Orazio, M. De Sario, G. Ficarella, V. Petruzzelli, and F. Prudenzano, “Design of active switches using an InxGa1−xAsyP1−y/InP heterostructure,” Int. J. Optoelectron. 11, 19-27 (1997).

J. Non-Cryst. Solids (1)

D. Biallo, A. D'Orazio, and V. Petruzzelli, “Enhanced light extraction in Er3+ doped SiO2-TiO2 microcavity embedded in one-dimensional photonic crystal,” J. Non-Cryst. Solids 352, 3823-3828 (2006).
[CrossRef]

Opt. Express (2)

Phys. Rev. E (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Other (4)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach (Springer-Verlag, 2006).

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very low threshold photonic band edge lasers from free-standing triangular photonic crystal slabs,” in Proceedings of Quantum Electronics and Laser Science Conference (2002), p. 75.

I. S. Nefedov, V. N. Gusyatnikov, and YuA. Morozov, “Optical gain in one-dimensional photonic band gap structures with n-i-p-i crystal layers,” in Proceedings of International Conference on Transparent Optical Networks (2001), pp. 76-79.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Scheme of the buried PBG device.

Fig. 2
Fig. 2

Operation scheme of the BBPM-MoL: x z cross section.

Fig. 3
Fig. 3

Reflectance R and transmittance T as functions of the wavelength λ calculated for different values of the number of layers N in the case of short defect length L 2 = 0.068 μ m . The injection current density is J = 490   mA / μ m 2 .

Fig. 4
Fig. 4

Total gain G as a function of the wavelength λ calculated for different values of the number of layers N in the case of short defect length L 2 = 0.068 μ m . The injection current density is J = 490   mA / μ m 2 .

Fig. 5
Fig. 5

Reflectance R and transmittance T as functions of the wavelength λ calculated for different values of the number of layers N in the case of long defect length L 2 = 0.680 μ m . The injection current density is J = 490   mA / μ m 2 .

Fig. 6
Fig. 6

Total gain G as a function of the wavelength λ calculated for different values of the number of layers N in the case of long defect length L 2 = 0.680 μ m . The injection current density is J = 490   mA / μ m 2 .

Fig. 7
Fig. 7

Total gain G as a function of the wavelength λ calculated for different values of the defect length L 2 . The injection current density is J = 490   mA / μ m 2 .

Fig. 8
Fig. 8

Transmission modulus | t | as a function of the wavelength λ calculated for different values of the defect length L 2 . The injection current density is J = 490   mA / μ m 2 .

Fig. 9
Fig. 9

Phase of the transmission as a function of the wavelength λ calculated for different values of the defect length L 2 . The injection current density is J = 490   mA / μ m 2 .

Fig. 10
Fig. 10

Derivative of the transmission phase, calculated with respect to the angular frequency ω, as a function of the wavelength λ calculated for different values of the defect length L 2 . The injection current density is J = 490   mA / μ m 2 .

Fig. 11
Fig. 11

Principal (solid curve) and secondary (dashed curve) maxima of the gain G as a function of the active defect length L 2 . The injection current density is J = 490   mA / μ m 2 .

Fig. 12
Fig. 12

Wavelengths corresponding to the principal (solid curve) and secondary (dashed curve) maxima of the gain as a function of the active defect length L 2 . The injection current density is J = 490   mA / μ m 2 . The white area is the wavelength range delimited by the two band edges of the transmittance and reflectance spectra of the periodic grating.

Fig. 13
Fig. 13

Total gain G as a function of the wavelength λ calculated for different values of the injection current density J in the case of short defect length L 2 = 0.068 μ m .

Fig. 14
Fig. 14

Total gain G as a function of the wavelength λ calculated for different values of the injection current density J in the case of long defect length L 2 = 0.680 μ m .

Fig. 15
Fig. 15

Total gain G as a function of the injection current density J: λ = 1.5524 μ m and short defect length L 2 = 0.068 μ m (solid curve); λ = 1.5480 μ m and long defect length L 2 = 0.680 μ m (dashed curve).

Fig. 16
Fig. 16

Wavelength of the principal maximum of the transmittance as a function of the injection current J for the defect length L 2 = 0.680 μ m .

Fig. 17
Fig. 17

Reflectance R and transmittance T as functions of the wavelength λ in the case of long defect length L 2 = 0.680 μ m : injection current densities are J = 0   A / μ m 2 (dashed curves) and J = 1   A / μ m 2 (solid curves).

Tables (2)

Tables Icon

Table 1 Rate Equation Parameters

Tables Icon

Table 2 Geometrical and Optical Parameters of the Buried Structure

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D e 2 σ ( x , y , z ) = J ( z ) e d a + g ( x , y , z ) e h v | E ( x , y , z ) | 2 + A σ + B σ 2 + C σ 3 ,
2 E ( x , y , z ) + k 0 n 2 ( x , y , z ) E ( x , y , z ) = 0 ,
n a ( x , y , z ) = n p + β e σ ( x , y , z ) + j g ( x , y , z ) 2 k 0 ,
λ B 2 ( n eff 1 1 + n eff 2 2 ) ,
( v g ) 1 d Φ ( ω ) d ω .

Metrics