Abstract

We present a model of an infrared metamaterial absorber composed of metal dendritic resonators, dielectric substrate, and continuous metal film. Numerical simulation confirms an absorptivity of 98.6% at the infrared wavelength of 2.79μm. The proposed metamaterial absorber has an excellence of two-dimensional isotropy, and it could be fabricated with a chemical double-template technique. Our simulation shows it could be operated for a wide range of incident angles. The optical metamaterial absorber proposed in this paper has potential applications such as in infrared imaging devices, thermal bolometers, and wavelength-selective radiators.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent wide-angle triple-band metamaterial absorber

Xiaopeng Shen, Tie Jun Cui, Junming Zhao, Hui Feng Ma, Wei Xiang Jiang, and Hui Li
Opt. Express 19(10) 9401-9407 (2011)

Compensating substrate-induced bianisotropy in optical metamaterials using ultrathin superstrate coatings

Zhi Hao Jiang and Douglas H. Werner
Opt. Express 21(5) 5594-5605 (2013)

Ultra-broadband long-wavelength infrared metamaterial absorber based on a double-layer metasurface structure

Kadir Üstün and Gönül Turhan-Sayan
J. Opt. Soc. Am. B 34(2) 456-462 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription