Abstract

The influence of an applied static magnetic field on a periodic structure composed of alternating layers of double positive index of refraction (DPS) uniaxial and double negative index of refraction (DNG) has been studied. We present theoretical and numerical results of our investigation of the reflection spectra of the visible waves on this structure. This structure works as a bandpass filter, and our evaluation indicates this structure functions as a tunable optical bandpass filter. The bandgap effect varies with the periodic parameters of the DPS–DNG structure, applied magnetic field, incidence angle, and frequency.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785-4809 (1998).
    [CrossRef]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  7. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-492 (2001).
    [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  9. P. Marko and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65, 033401 (2001).
    [CrossRef]
  10. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  11. A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisttpan, “MgB2-based negative refraction index metamaterial at visible frequency,” Phys. Rev. B 76, 195123 (2007).
    [CrossRef]
  12. J. Shahbazian and A. Karakashian, “Reflection of visible light on the anisotropic slab of DPS-DNG layers,” J. Opt. Soc. Am. B 26, B1-B6 (2009).
    [CrossRef]
  13. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295-2298 (1991).
    [CrossRef] [PubMed]
  14. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  15. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  16. M. J. Bloemer and M. Scalora “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
    [CrossRef]
  17. A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, “Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures,” Appl. Phys. Lett. 83, 1842-1844 (2003).
    [CrossRef]
  18. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003).
    [CrossRef]
  19. B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “Ultrafast magneto-optics in nickel: magnetism or optics?,” Phys. Rev. Lett. 85, 844-847 (2000).
    [CrossRef] [PubMed]
  20. V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78, 2004-2007 (1997).
    [CrossRef]
  21. F. A. Pinheiro1, A. S. Martinez, and L. C. Sampaio1, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
    [CrossRef]
  22. M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70, 235103-235118 (2004).
    [CrossRef]
  23. M. Rasa, A. P. Philipse, and D. Jamon, “Initial susceptibility, flow curves, and magneto-optics of inverse magnetic fluids,” Phys. Rev. E 68, 031402-031418 (2003).
    [CrossRef]
  24. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003).
    [CrossRef]
  25. A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210-165230 (2003).
    [CrossRef]
  26. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609-066626 (2001).
    [CrossRef]
  27. J. A. Monsoriu, R. A. Depine, M. L. Martnez-Ricci, and E. Silvestre, “Interaction between non-Bragg band gaps in 1D metamaterial photonic crystals,” Opt. Express 14, 12958-12967 (2006).
    [CrossRef] [PubMed]
  28. P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).
  29. W. J. Tabor, “Magnetooptic Materials,” in Laser Handbook, F.T.Arecchi and E.O.Schulz-Dubuis, eds. (North-Holland, 1972).

2009 (1)

2007 (1)

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisttpan, “MgB2-based negative refraction index metamaterial at visible frequency,” Phys. Rev. B 76, 195123 (2007).
[CrossRef]

2006 (1)

2004 (1)

M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70, 235103-235118 (2004).
[CrossRef]

2003 (5)

M. Rasa, A. P. Philipse, and D. Jamon, “Initial susceptibility, flow curves, and magneto-optics of inverse magnetic fluids,” Phys. Rev. E 68, 031402-031418 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003).
[CrossRef]

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210-165230 (2003).
[CrossRef]

A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, “Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures,” Appl. Phys. Lett. 83, 1842-1844 (2003).
[CrossRef]

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003).
[CrossRef]

2002 (1)

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

2001 (4)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-492 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

P. Marko and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65, 033401 (2001).
[CrossRef]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609-066626 (2001).
[CrossRef]

2000 (4)

F. A. Pinheiro1, A. S. Martinez, and L. C. Sampaio1, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “Ultrafast magneto-optics in nickel: magnetism or optics?,” Phys. Rev. Lett. 85, 844-847 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1998 (4)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

M. J. Bloemer and M. Scalora “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

1997 (1)

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78, 2004-2007 (1997).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1991 (1)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Abe, M.

M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70, 235103-235118 (2004).
[CrossRef]

Afonso, C. N.

A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, “Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures,” Appl. Phys. Lett. 83, 1842-1844 (2003).
[CrossRef]

Akyurtlu, A.

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisttpan, “MgB2-based negative refraction index metamaterial at visible frequency,” Phys. Rev. B 76, 195123 (2007).
[CrossRef]

Angkawisttpan, N.

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisttpan, “MgB2-based negative refraction index metamaterial at visible frequency,” Phys. Rev. B 76, 195123 (2007).
[CrossRef]

Bertolotti, M.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Bloemer, M. J.

M. J. Bloemer and M. Scalora “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

de Jonge, W. J. M.

B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “Ultrafast magneto-optics in nickel: magnetism or optics?,” Phys. Rev. Lett. 85, 844-847 (2000).
[CrossRef] [PubMed]

del Coso, R.

A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, “Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures,” Appl. Phys. Lett. 83, 1842-1844 (2003).
[CrossRef]

Depine, R. A.

Egawa, M.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003).
[CrossRef]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Feshbach, H.

P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

Figotin, A.

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210-165230 (2003).
[CrossRef]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609-066626 (2001).
[CrossRef]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Inoue, M.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003).
[CrossRef]

Jamon, D.

M. Rasa, A. P. Philipse, and D. Jamon, “Initial susceptibility, flow curves, and magneto-optics of inverse magnetic fluids,” Phys. Rev. E 68, 031402-031418 (2003).
[CrossRef]

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Karakashian, A.

Kato, H.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003).
[CrossRef]

Kirilyuk, A.

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78, 2004-2007 (1997).
[CrossRef]

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Kohlhepp, J. T.

B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “Ultrafast magneto-optics in nickel: magnetism or optics?,” Phys. Rev. Lett. 85, 844-847 (2000).
[CrossRef] [PubMed]

Koopmans, B.

B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “Ultrafast magneto-optics in nickel: magnetism or optics?,” Phys. Rev. Lett. 85, 844-847 (2000).
[CrossRef] [PubMed]

Kussow, A.-G.

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisttpan, “MgB2-based negative refraction index metamaterial at visible frequency,” Phys. Rev. B 76, 195123 (2007).
[CrossRef]

Larciprete, M. C.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003).
[CrossRef]

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Marko, P.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

P. Marko and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65, 033401 (2001).
[CrossRef]

Martinez, A. S.

F. A. Pinheiro1, A. S. Martinez, and L. C. Sampaio1, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef]

Martnez-Ricci, M. L.

Matsushita, T.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003).
[CrossRef]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Monsoriu, J. A.

Morse, P.

P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

Nemat-Nasser, S. C.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-492 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nishimura, K.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Paoloni, S.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003).
[CrossRef]

Pavlov, V. V.

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78, 2004-2007 (1997).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Philipse, A. P.

M. Rasa, A. P. Philipse, and D. Jamon, “Initial susceptibility, flow curves, and magneto-optics of inverse magnetic fluids,” Phys. Rev. E 68, 031402-031418 (2003).
[CrossRef]

Pinheiro1, F. A.

F. A. Pinheiro1, A. S. Martinez, and L. C. Sampaio1, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef]

Pisarev, R. V.

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78, 2004-2007 (1997).
[CrossRef]

Rasa, M.

M. Rasa, A. P. Philipse, and D. Jamon, “Initial susceptibility, flow curves, and magneto-optics of inverse magnetic fluids,” Phys. Rev. E 68, 031402-031418 (2003).
[CrossRef]

Rasing, Th.

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78, 2004-2007 (1997).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Russell, P. St. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Sampaio1, L. C.

F. A. Pinheiro1, A. S. Martinez, and L. C. Sampaio1, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef]

Sarto, F.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003).
[CrossRef]

Scalora, M.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003).
[CrossRef]

M. J. Bloemer and M. Scalora “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-492 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Semichaevsky, A.

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisttpan, “MgB2-based negative refraction index metamaterial at visible frequency,” Phys. Rev. B 76, 195123 (2007).
[CrossRef]

Serna, R.

A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, “Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures,” Appl. Phys. Lett. 83, 1842-1844 (2003).
[CrossRef]

Shahbazian, J.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-492 (2001).
[CrossRef]

Sibilia, C.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003).
[CrossRef]

Silvestre, E.

Smith, D. R.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-492 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Solis, J.

A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, “Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures,” Appl. Phys. Lett. 83, 1842-1844 (2003).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

P. Marko and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65, 033401 (2001).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Suarez-Garcia, A.

A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, “Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures,” Appl. Phys. Lett. 83, 1842-1844 (2003).
[CrossRef]

Suwa, T.

M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70, 235103-235118 (2004).
[CrossRef]

Tabor, W. J.

W. J. Tabor, “Magnetooptic Materials,” in Laser Handbook, F.T.Arecchi and E.O.Schulz-Dubuis, eds. (North-Holland, 1972).

Takayama, A.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003).
[CrossRef]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

van Kampen, M.

B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “Ultrafast magneto-optics in nickel: magnetism or optics?,” Phys. Rev. Lett. 85, 844-847 (2000).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Vitebskiy, I.

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210-165230 (2003).
[CrossRef]

Vitebsky, I.

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609-066626 (2001).
[CrossRef]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-492 (2001).
[CrossRef]

M. J. Bloemer and M. Scalora “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, “Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures,” Appl. Phys. Lett. 83, 1842-1844 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Appl. Phys. (2)

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013-5017 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906-3910 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (5)

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210-165230 (2003).
[CrossRef]

M. Abe and T. Suwa, “Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70, 235103-235118 (2004).
[CrossRef]

P. Marko and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65, 033401 (2001).
[CrossRef]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

A.-G. Kussow, A. Akyurtlu, A. Semichaevsky, and N. Angkawisttpan, “MgB2-based negative refraction index metamaterial at visible frequency,” Phys. Rev. B 76, 195123 (2007).
[CrossRef]

Phys. Rev. E (2)

M. Rasa, A. P. Philipse, and D. Jamon, “Initial susceptibility, flow curves, and magneto-optics of inverse magnetic fluids,” Phys. Rev. E 68, 031402-031418 (2003).
[CrossRef]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609-066626 (2001).
[CrossRef]

Phys. Rev. Lett. (7)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, “Ultrafast magneto-optics in nickel: magnetism or optics?,” Phys. Rev. Lett. 85, 844-847 (2000).
[CrossRef] [PubMed]

V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Phys. Rev. Lett. 78, 2004-2007 (1997).
[CrossRef]

F. A. Pinheiro1, A. S. Martinez, and L. C. Sampaio1, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef]

Science (3)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (2)

P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

W. J. Tabor, “Magnetooptic Materials,” in Laser Handbook, F.T.Arecchi and E.O.Schulz-Dubuis, eds. (North-Holland, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geomerical structure of the heterostructure.

Fig. 2
Fig. 2

Frequency dependence of the effective ϵ (solid curve) and μ (dashed curve).

Fig. 3
Fig. 3

The reflectance of the visible electromagnetic wave on DPS–DNG structure for incidence angles of 30° (top),45° (middle), and 60° in presense of external magnetic fields (in tesla) of 1T (first column), 2T (middle column), and 3T (third column). The blue/dashed curve is for the case of presence of magnetic field and red/solid curve for the case of absence of magnetic field.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E ( z , t ) = E 0 exp { i ω ( t z ( n r + n l ) 2 c ) } { cos [ z ω ( n r n l ) 2 c ] x ̂ + sin [ z ω ( n r n l ) 2 c ] y ̂ } ,
× ( × E ) = ω 2 ( ϵ + Δ ϵ ) ( μ + Δ μ ) E ,
ϵ = ( ϵ x x i ϵ y y 0 i ϵ y y ϵ x x 0 0 0 ϵ z z ) μ = ( μ x x i μ y y 0 i μ y y μ x x 0 0 0 μ z z ) .
E ( z , t ) = i E i ( z ) e i ( ω t k i z ) i = 1 , 2 .
Δ ϵ i j = ϵ 0 ( ϵ x i G 0 i G ϵ y 0 0 0 ϵ z ) ,
K eff e ̂ = k e ̂ ,
K eff = ( k 1 ω 2 2 k 1 Δ 12 ω 2 2 k 2 Δ 21 k 2 ) ,
Det ( n 1 n 1 2 n 1 Δ 12 1 2 n 2 Δ 12 n 2 n ) = 0 ,
n = n 1 + n 2 2 ± ( n 1 n 2 2 ) 2 + Δ 12 2 4 n 1 n 2 .
η = π λ ( n 1 n 2 ) = π Δ 12 λ ( n 1 + n 2 2 ) = V B ,
ϵ y y ( ω ) = 1 + 4.8412 2 2.1101 2 ω 2 ,
μ y y ( ω ) = 1 + 4.2295 2 3.6698 2 ω 2 ,
( E x E y B x B y ) = ( 1 1 1 1 i i i i i ϵ 1 + ϵ 2 μ 1 + μ 2 i ϵ 1 + ϵ 2 μ 1 + μ 2 i ϵ 1 ϵ 2 μ 1 μ 2 i ϵ 1 ϵ 2 μ 1 μ 2 ϵ 1 + ϵ 2 μ 1 + μ 2 ϵ 1 + ϵ 2 μ 1 + μ 2 ϵ 1 + ϵ 2 μ 1 + μ 2 ϵ 1 + ϵ 2 μ 1 + μ 2 ) × ( A e i k 1 z B e i k 1 z C e i k 2 z D e i k 2 z ) ,
( C 3 0 0 0 0 0 C 4 0 0 0 C 4 0 C 3 0 0 0 ) ( e i k ( z z 0 d ) e i k ( z z 0 d ) e i k ( z z 0 d ) e i k ( z z 0 d ) ) = T ( 1 C 1 0 0 0 0 0 C 2 0 0 0 C 2 1 C 1 0 0 ) ( e i k ( z z 0 ) e i k ( z z 0 ) e i k ( z z 0 ) e i k ( z z 0 ) ) ,
R = | C 1 | 2 + | C 2 | 2 ,
T = | C 3 | 2 + | C 4 | 2 .

Metrics