Abstract

We achieved apodization in a quasi-phase-matched (QPM) wavelength converter by changing the duty cycle of a χ(2) grating. The new design yields a large bandwidth and a flat phase-matching response with high conversion efficiency. Widely tunable 3-μm-band difference frequency generation was realized using an apodized QPM LiNbO3 ridge waveguide. We also demonstrated the simultaneous detection of the absorption lines of CH4 and C2H4 and obtained a broadband absorption spectrum of over 100nm using the widely tunable source.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Toepfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, and F. K. Tittel, “Room-temperature midinfrared laser sensor for trace gas detection,” Appl. Opt. 36, 8042-8049 (1997).
    [CrossRef]
  2. T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
    [CrossRef]
  3. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “A direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609-610 (2003).
    [CrossRef]
  4. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
    [CrossRef]
  5. M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi-phase-matched second-harmonic generation in LiNbO3 waveguides,” Electron. Lett. 30, 34-35 (1994).
    [CrossRef]
  6. K. Mizuuchi and K. Yamamoto, “Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts,” Opt. Lett. 23, 1880-1882 (1998).
    [CrossRef]
  7. Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002).
    [CrossRef]
  8. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046-1048 (2002).
    [CrossRef]
  9. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
    [CrossRef]
  10. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), pp. 195-223.
    [CrossRef]
  11. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604-606 (2006).
    [CrossRef] [PubMed]
  12. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second- harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  13. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129-1131 (2007).
    [CrossRef] [PubMed]
  14. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  15. M. H. Chou, K. R. Parameswaran, and T. Taira, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157-1159 (1999).
    [CrossRef]
  16. M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase-matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-342 (2005).
    [CrossRef]
  17. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435-436 (1993).
    [CrossRef]
  18. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]

2007 (1)

2006 (3)

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604-606 (2006).
[CrossRef] [PubMed]

T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

2005 (1)

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase-matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-342 (2005).
[CrossRef]

2003 (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “A direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609-610 (2003).
[CrossRef]

2002 (2)

Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046-1048 (2002).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

1994 (1)

M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi-phase-matched second-harmonic generation in LiNbO3 waveguides,” Electron. Lett. 30, 34-35 (1994).
[CrossRef]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second- harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Asobe, M.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129-1131 (2007).
[CrossRef] [PubMed]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase-matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-342 (2005).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “A direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609-610 (2003).
[CrossRef]

Bortz, M. L.

M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi-phase-matched second-harmonic generation in LiNbO3 waveguides,” Electron. Lett. 30, 34-35 (1994).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second- harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Cha, M.

Chou, M. H.

Curl, R. F.

Fei, W.

Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002).
[CrossRef]

Fejer, M. M.

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604-606 (2006).
[CrossRef] [PubMed]

M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi-phase-matched second-harmonic generation in LiNbO3 waveguides,” Electron. Lett. 30, 34-35 (1994).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second- harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Fujimura, M.

M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi-phase-matched second-harmonic generation in LiNbO3 waveguides,” Electron. Lett. 30, 34-35 (1994).
[CrossRef]

Huang, J.

Hum, D. S.

Jundt, D.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second- harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), pp. 195-223.
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Kurimura, S.

Langrock, C.

Magari, K.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129-1131 (2007).
[CrossRef] [PubMed]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second- harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Mine, Y.

Miyazawa, H.

T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase-matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-342 (2005).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “A direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609-610 (2003).
[CrossRef]

Mizuuchi, K.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Nishida, Y.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129-1131 (2007).
[CrossRef] [PubMed]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase-matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-342 (2005).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “A direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609-610 (2003).
[CrossRef]

Nishihara, H.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
[CrossRef]

Parameswaran, K. R.

Petrov, K. P.

Ro, J. H.

Roussev, R. V.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Suhara, T.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
[CrossRef]

Suzuki, H.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129-1131 (2007).
[CrossRef] [PubMed]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase-matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-342 (2005).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “A direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609-610 (2003).
[CrossRef]

Tadanaga, O.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129-1131 (2007).
[CrossRef] [PubMed]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
[CrossRef]

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase-matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-342 (2005).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “A direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609-610 (2003).
[CrossRef]

Taira, T.

Tittel, F. K.

Toepfer, Th.

Umeki, T.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Xianfeng, C.

Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002).
[CrossRef]

Xianglong, Z.

Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002).
[CrossRef]

Xie, X. P.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

Yamamoto, K.

Yanagawa, T.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129-1131 (2007).
[CrossRef] [PubMed]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
[CrossRef]

Yingli, C.

Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002).
[CrossRef]

Yu, N. E.

Yuping, C.

Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002).
[CrossRef]

Yuxing, X.

Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

T. Yanagawa, O. Tadanaga, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “CH4 monitoring in ambient air by communication band laser-diode-based difference frequency generation in a quasi-phase-matched LiNbO3,” Appl. Phys. Lett. 89, 22115 (2006).
[CrossRef]

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006).
[CrossRef]

Electron. Lett. (2)

M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi-phase-matched second-harmonic generation in LiNbO3 waveguides,” Electron. Lett. 30, 34-35 (1994).
[CrossRef]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “A direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609-610 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265-1276 (1990).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second- harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

IEICE Trans. Electron. (1)

M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase-matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-342 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Opt. Commun. (1)

Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted gratings,” Opt. Commun. 204, 407-411 (2002).
[CrossRef]

Opt. Lett. (5)

Other (2)

R. W. Boyd, Nonlinear Optics (Academic, 1992).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), pp. 195-223.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Phase-matching curves for (a) uniform grating, (b)-(f) linearly chirped grating. Dashed curve: apodized for tanh profile.

Fig. 2
Fig. 2

Schematic of apodized grating structure.

Fig. 3
Fig. 3

(a) Various apodization profiles. (b) Phase-matching curves for chirped and apodized grating. The vertical axis is normalized by the conversion efficiency of the uniform gratings.

Fig. 4
Fig. 4

(a) Apodization profiles for various apodezation parameters a. (b) Phase-matching curves for chirped and apodized grating. The vertical axis is normalized by the conversion efficiency of the uniform gratings.

Fig. 5
Fig. 5

Ripple size and conversion efficiency as a function of degree of apodization.

Fig. 6
Fig. 6

Conversion efficiency as a function of degree of apodization for various finite minimum-duty cycles.

Fig. 7
Fig. 7

Phase-matching curves for domain errors.

Fig. 8
Fig. 8

Microscope photograph of a fabricated periodically poled structure at the edge of a device.

Fig. 9
Fig. 9

(a) Theoretical tuning curves for uniform, linear-chirped, and apodized QPM gratings. (b) Measured tuning curves for linear-chirped and apodized QPM gratings.

Fig. 10
Fig. 10

Measured and calculated DFG tuning curves.

Fig. 11
Fig. 11

Experimental setup for measuring hydrocarbon gas absorption lines.

Fig. 12
Fig. 12

Measured absorption spectrum. (a) Simultaneously observed spectra for C H 4 and C 2 H 4 . (b) Superimposed individual spectra for C H 4 and C 2 H 4 .

Tables (1)

Tables Icon

Table 1 Degree of Apodization for Four Profiles

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E out = i 2 π n out λ out E p E s * 0 L d ( z ) exp ( i Δ β z ) d z ,
η = η max L 2 sin [ ( Δ β 2 π Λ ) L 2 ] 2 [ ( Δ β 2 π Λ ) L 2 ] 2 .
K ( z ) = K 0 ( 1 + r z ) ,
Λ ( z ) = Λ 0 ( 1 + r z ) , Λ 0 = 2 π K 0 ,
R = ( K e K s ) L 2 π = ( 1 Λ e 1 Λ s ) L ,
f ( z ) = 1 2 sin 2 ( π z L ) , 0 z L .
f ( z ) = 1 2 sin ( x ) x , x = 2 π ( z L 2 ) L ; 0 z L .
f ( z ) = 1 2 sin ( π z L ) , 0 z L .
f ( z ) = 1 2 tanh [ 2 a z L ] , 0 z L 2 ,
= 1 2 tanh [ 2 a ( L z ) L ] , L 2 z L .
f ( z ) = ( 0.5 x ) tanh [ 2 a z L ] + x , 0 z L 2 ,
= ( 0.5 x ) tanh [ 2 a ( L z ) L ] + x , L 2 z L ,

Metrics