Abstract

We present a detailed study of the use of Fabry–Perot (FP) cavities for the spectroscopy of single InAs quantum dots (QDs). We derive optimal cavity characteristics and resolution limits and measure photoluminescence linewidths as low as 0.9GHz. By embedding the QDs in a planar cavity, we obtain a sufficiently large signal to actively feed back on the length of the FP to lock to the emission of a single QD with a stability below 2% of the QD linewidth. An integration time of approximately two seconds is found to yield an optimum compromise between shot noise and cavity length fluctuations.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dye laser spectrometer for ultrahigh spectral resolution: design and performance

J. Helmcke, S. A. Lee, and J. L. Hall
Appl. Opt. 21(9) 1686-1694 (1982)

Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and micro-parametric oscillators

Tal Carmon, Tobias J. Kippenberg, Lan Yang, Hosein Rokhsari, Sean Spillane, and Kerry J. Vahala
Opt. Express 13(9) 3558-3566 (2005)

High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers

Jun Ye, Long-Sheng Ma, and John L. Hall
J. Opt. Soc. Am. B 17(6) 927-931 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription