Abstract

We develop an iterative (averaging) method to characterize the mode-locking dynamics in a laser cavity mode locked with a combination of wave plates and a passive polarizer. The model explicitly accounts for the effects of self- and cross-phase modulation, an arbitrary alignment of the fast- and slow-axes of the fiber with the wave plates and polarizer, fiber birefringence, saturable gain, and chromatic dispersion. The general averaging scheme results in the cubic-quintic Ginzburg–Landau equation at the leading order and the Swift–Hohenberg equation at the next order. An extensive comparison between the full model and the averaged equations shows a quantitative agreement that allows for characterizing the stability and operating regimes of the laser cavity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription