Abstract

We investigate the storage and retrieval of a weak signal light in a thermal Λ type three-level atomic system. We examine in detail the time-dependent aspect of this system in which atomic motion with both internal and translational degrees of freedom is taken into consideration under different conditions of the atomic momentum distributions and the settings of two light fields. We confirm the effectiveness of a Doppler-free copropagating configuration in promoting the efficiency of the system operation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
    [CrossRef]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
    [CrossRef] [PubMed]
  3. H. Wang, X.-G. Wei, L. Wang, Y.-J. Li, D.-M. Du, J.-H. Wu, Z.i-H. Kang, Y. Jiang, and J.-Y. Gao, “Optical information transfer between two light channels in a Pr3+:Y2SiO5 crystal,” Opt. Express 15, 16044-16050 (2007).
    [CrossRef] [PubMed]
  4. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
    [CrossRef]
  5. B. Julsgaard, J. Sherson, J. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482-486 (2004).
    [CrossRef] [PubMed]
  6. A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. B 38, 589-604 (2005).
    [CrossRef]
  7. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094-5097 (2000).
    [CrossRef] [PubMed]
  8. A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and M. O. Scully, “Nonadiabatic approach to quantum optical information storage,” Phys. Rev. A 64, 043809 (2001).
    [CrossRef]
  9. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
    [CrossRef] [PubMed]
  10. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463-512 (1999).
    [CrossRef]
  11. N. S. Ginsberg, S. R. Garner, and L. V. Hau, “Coherent control of optical information with matter wave dynamics,” Nature (London) 445, 623-626 (2007).
    [CrossRef]
  12. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997).
    [CrossRef]
  13. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107-1110 (1990).
    [CrossRef] [PubMed]
  14. For a recent review article, see E. Arimondo, in Progress in Optics, E.Wolf, ed. (Elsevier, 1996), Vol. XXXV, p. 257 and references therein.
    [CrossRef]
  15. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
    [CrossRef]
  16. A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ type optically dense atomic medium. III. Effects of inhomogeneous broadening,” Phys. Rev. A 76, 033806 (2007).
    [CrossRef]
  17. M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837-841(2005).
    [CrossRef] [PubMed]
  18. I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 78, 243602 (2007).
    [CrossRef]
  19. A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
    [CrossRef] [PubMed]
  20. S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
    [CrossRef] [PubMed]
  21. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
    [CrossRef] [PubMed]
  22. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268-271 (2003).
    [CrossRef] [PubMed]
  23. Y. Castin, H. Wallis, and J. Dalibard, “Limit of Doppler cooling,” J. Opt. Soc. Am. B 6, 2046-2057 (1989).
    [CrossRef]
  24. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
    [CrossRef] [PubMed]
  25. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping: theoretical analysis,” J. Opt. Soc. Am. B 6, 2112-2124 (1989).
    [CrossRef]
  26. J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023-2045 (1989).
    [CrossRef]

2007 (5)

H. Wang, X.-G. Wei, L. Wang, Y.-J. Li, D.-M. Du, J.-H. Wu, Z.i-H. Kang, Y. Jiang, and J.-Y. Gao, “Optical information transfer between two light channels in a Pr3+:Y2SiO5 crystal,” Opt. Express 15, 16044-16050 (2007).
[CrossRef] [PubMed]

N. S. Ginsberg, S. R. Garner, and L. V. Hau, “Coherent control of optical information with matter wave dynamics,” Nature (London) 445, 623-626 (2007).
[CrossRef]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ type optically dense atomic medium. III. Effects of inhomogeneous broadening,” Phys. Rev. A 76, 033806 (2007).
[CrossRef]

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 78, 243602 (2007).
[CrossRef]

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

2006 (1)

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

2005 (2)

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837-841(2005).
[CrossRef] [PubMed]

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. B 38, 589-604 (2005).
[CrossRef]

2004 (1)

B. Julsgaard, J. Sherson, J. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

2003 (1)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

2001 (3)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and M. O. Scully, “Nonadiabatic approach to quantum optical information storage,” Phys. Rev. A 64, 043809 (2001).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

1999 (2)

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463-512 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997).
[CrossRef]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107-1110 (1990).
[CrossRef] [PubMed]

1989 (3)

1988 (1)

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

1976 (1)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Afzelius, M.

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

Alexander, A. L.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

Alzetta, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

André, A.

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ type optically dense atomic medium. III. Effects of inhomogeneous broadening,” Phys. Rev. A 76, 033806 (2007).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837-841(2005).
[CrossRef] [PubMed]

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. B 38, 589-604 (2005).
[CrossRef]

Arimondo, E.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping: theoretical analysis,” J. Opt. Soc. Am. B 6, 2112-2124 (1989).
[CrossRef]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

For a recent review article, see E. Arimondo, in Progress in Optics, E.Wolf, ed. (Elsevier, 1996), Vol. XXXV, p. 257 and references therein.
[CrossRef]

Aspect, A.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping: theoretical analysis,” J. Opt. Soc. Am. B 6, 2112-2124 (1989).
[CrossRef]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Castin, Y.

Cirac, J.

B. Julsgaard, J. Sherson, J. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Cohen-Tannoudji, C.

Dalfovo, F.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463-512 (1999).
[CrossRef]

Dalibard, J.

Du, D.-M.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Eisaman, M. D.

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. B 38, 589-604 (2005).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837-841(2005).
[CrossRef] [PubMed]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107-1110 (1990).
[CrossRef] [PubMed]

Fiurášek, J.

B. Julsgaard, J. Sherson, J. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Fleischhauer, M.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837-841(2005).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

Gao, J.-Y.

Garner, S. R.

N. S. Ginsberg, S. R. Garner, and L. V. Hau, “Coherent control of optical information with matter wave dynamics,” Nature (London) 445, 623-626 (2007).
[CrossRef]

Ginsberg, N. S.

N. S. Ginsberg, S. R. Garner, and L. V. Hau, “Coherent control of optical information with matter wave dynamics,” Nature (London) 445, 623-626 (2007).
[CrossRef]

Giorgini, S.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463-512 (1999).
[CrossRef]

Gisin, N.

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

Gorshkov, A. V.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 78, 243602 (2007).
[CrossRef]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ type optically dense atomic medium. III. Effects of inhomogeneous broadening,” Phys. Rev. A 76, 033806 (2007).
[CrossRef]

Gozzini, A.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107-1110 (1990).
[CrossRef] [PubMed]

Hastings-Simon, S. R.

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

Hau, L. V.

N. S. Ginsberg, S. R. Garner, and L. V. Hau, “Coherent control of optical information with matter wave dynamics,” Nature (London) 445, 623-626 (2007).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107-1110 (1990).
[CrossRef] [PubMed]

Jiang, Y.

Julsgaard, B.

B. Julsgaard, J. Sherson, J. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Kaiser, R.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping: theoretical analysis,” J. Opt. Soc. Am. B 6, 2112-2124 (1989).
[CrossRef]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

Kang, Z.i-H.

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Kocharovskaya, O.

A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and M. O. Scully, “Nonadiabatic approach to quantum optical information storage,” Phys. Rev. A 64, 043809 (2001).
[CrossRef]

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Li, Y.-J.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Longdell, J. J.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

Lukin, M. D.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 78, 243602 (2007).
[CrossRef]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ type optically dense atomic medium. III. Effects of inhomogeneous broadening,” Phys. Rev. A 76, 033806 (2007).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837-841(2005).
[CrossRef] [PubMed]

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. B 38, 589-604 (2005).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Manson, N. B.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

Massou, F.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837-841(2005).
[CrossRef] [PubMed]

Matsko, A. B.

A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and M. O. Scully, “Nonadiabatic approach to quantum optical information storage,” Phys. Rev. A 64, 043809 (2001).
[CrossRef]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Moi, L.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Nilsson, M.

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

Novikova, I.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 78, 243602 (2007).
[CrossRef]

Orriols, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Phillips, D. F.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 78, 243602 (2007).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Pitaevskii, L. P.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463-512 (1999).
[CrossRef]

Polzik, E. S.

B. Julsgaard, J. Sherson, J. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Ricken, R.

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

Rostovtsev, Y. V.

A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and M. O. Scully, “Nonadiabatic approach to quantum optical information storage,” Phys. Rev. A 64, 043809 (2001).
[CrossRef]

Scarani, V.

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

Scully, M. O.

A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and M. O. Scully, “Nonadiabatic approach to quantum optical information storage,” Phys. Rev. A 64, 043809 (2001).
[CrossRef]

Sellars, M. J.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

Sherson, J.

B. Julsgaard, J. Sherson, J. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

Sohler, W.

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

Sørensen, A. S.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 78, 243602 (2007).
[CrossRef]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ type optically dense atomic medium. III. Effects of inhomogeneous broadening,” Phys. Rev. A 76, 033806 (2007).
[CrossRef]

Stringari, S.

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463-512 (1999).
[CrossRef]

Suche, H.

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

Tittel, W.

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

Vansteenkiste, N.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping: theoretical analysis,” J. Opt. Soc. Am. B 6, 2112-2124 (1989).
[CrossRef]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

Wallis, H.

Walsworth, R. L.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 78, 243602 (2007).
[CrossRef]

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. B 38, 589-604 (2005).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Wang, H.

Wang, L.

Wei, X.-G.

Wu, J.-H.

Zibrov, A. S.

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. B 38, 589-604 (2005).
[CrossRef]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837-841(2005).
[CrossRef] [PubMed]

A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and M. O. Scully, “Nonadiabatic approach to quantum optical information storage,” Phys. Rev. A 64, 043809 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. B 38, 589-604 (2005).
[CrossRef]

Nature (4)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

B. Julsgaard, J. Sherson, J. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482-486 (2004).
[CrossRef] [PubMed]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837-841(2005).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268-271 (2003).
[CrossRef] [PubMed]

Nature (London) (1)

N. S. Ginsberg, S. R. Garner, and L. V. Hau, “Coherent control of optical information with matter wave dynamics,” Nature (London) 445, 623-626 (2007).
[CrossRef]

Nuovo Cimento Soc. Ital. Fis., B (1)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento Soc. Ital. Fis., B 36, 5-20 (1976).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (3)

M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002).
[CrossRef]

A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and M. O. Scully, “Nonadiabatic approach to quantum optical information storage,” Phys. Rev. A 64, 043809 (2001).
[CrossRef]

A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ type optically dense atomic medium. III. Effects of inhomogeneous broadening,” Phys. Rev. A 76, 033806 (2007).
[CrossRef]

Phys. Rev. Lett. (9)

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107-1110 (1990).
[CrossRef] [PubMed]

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 78, 243602 (2007).
[CrossRef]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (2006).
[CrossRef] [PubMed]

S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V. Scarani, R. Ricken, H. Suche, W. Sohler, W. Tittel, and N. Gisin, “Fidelity of an optical memory based on stimulated photon echoes,” Phys. Rev. Lett. 98, 113601 (2007).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463-512 (1999).
[CrossRef]

Other (1)

For a recent review article, see E. Arimondo, in Progress in Optics, E.Wolf, ed. (Elsevier, 1996), Vol. XXXV, p. 257 and references therein.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of a Λ type three-level atomic system under our consideration.

Fig. 2
Fig. 2

Adiabatic change of the coupling field.

Fig. 3
Fig. 3

Evolution of | a ¯ | in the case of two copropagating laser fields. The atom is initially in | g 1 , p k with Δ p equal to (a) Δ p = 5.0 k , (b) Δ p = 2.0 k , and (c) Δ p = 0.0 . The insets display the early evolution of | a ¯ | .

Fig. 4
Fig. 4

Evolution of | a ¯ | in the case of two copropagating laser fields and Δ p = 10.0 k . The atom is initially in (a) | Ψ N C ( p ) , (b) | g 2 , p k , and (c) | g 1 , p k .

Fig. 5
Fig. 5

Probability of the atom in the dark state for Δ p = 10.0 k . The atom is initially in (a) | Ψ N C ( p ) for dashed curve and | g 1 , p k for solid curve, and (b) | g 2 , p k .

Fig. 6
Fig. 6

Evolution of | a ¯ | in the case of two counterpropagating laser fields. The atom is initially in | Ψ N C ( p ) with (a) Δ p = 0.2 k , (b) Δ p = 0.05 k , and (c) Δ p = 0.0 .

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

H ̂ = H ̂ A + V ̂ ,
H ̂ A = P ̂ 2 2 M | e 0 , p e 0 , p | + ( P ̂ 2 2 M Δ 1 ) | g 1 , p k 1 g 1 , p k 1 | + ( P ̂ 2 2 M Δ 2 ) | g 2 , p + ( 1 ) l k 2 g 2 , p + ( 1 ) l k 2 | ,
V ̂ = 2 p ( g a ̂ | e 0 , p g 1 , p k 1 | + Ω 2 | e 0 , p g 2 , p + ( 1 ) l k 2 | + h.c. ) ,
| Ψ N C ( p ) = [ Ω 2 | g 1 , p k 1 g a ¯ | g 2 , p + ( 1 ) l k 2 ] Ω ,
| Ψ C ( p ) = [ g * a ¯ * | g 1 , p k 1 + Ω 2 * | g 2 , p + ( 1 ) l k 2 ] Ω ,
Δ 01 = p k 1 M k 1 2 2 M + Δ 1 ,
Δ 02 = ( 1 ) l p k 2 M k 2 2 2 M + Δ 2 ,
Δ 12 = k 1 2 2 M k 2 2 2 M p [ k 1 + ( 1 ) l k 2 ] M + Δ 2 Δ 1 .
p = p 0 = ( k 1 2 k 2 2 ) + 2 m ( Δ 2 Δ 1 ) 2 [ k 1 + ( 1 ) l k 2 ] ,
a ¯ t = i 2 g * p e 0 , p | ρ ̂ | g 1 , p k 1 .
ρ 00 t = i 2 [ g a ¯ ρ 10 g * a ¯ * ρ 01 + Ω 2 ρ 20 Ω 2 * ρ 02 ] ( γ 1 + γ 2 ) ρ 00 ,
ρ 01 t = i Δ 01 ρ 01 i 2 [ g a ¯ ( ρ 11 ρ 00 ) + Ω 2 ρ 21 ] ( γ 1 + γ 2 ) 2 ρ 01 ,
ρ 02 t = i Δ 02 ρ 02 i 2 [ g a ¯ ρ 12 + Ω 2 ( ρ 22 ρ 00 ) ] ( γ 1 + γ 2 ) 2 ρ 02 ,
ρ 11 t = i 2 ( g * a ¯ * ρ 01 g a ¯ ρ 10 ) + γ 1 k 1 k 1 d u W 1 ( u ) ρ 00 ( p k 1 + u ) ,
ρ 12 t = i Δ 12 ρ 12 i 2 ( g * a ¯ * ρ 02 Ω 2 ρ 10 ) ,
ρ 22 t = i 2 ( Ω 2 * ρ 02 Ω 2 ρ 20 ) + γ 2 k 2 k 2 d u W 2 ( u ) ρ 00 ( p + ( 1 ) l k 2 + u ) ,
Ω 2 ( t ) = β { 1 0.5 tanh [ 0.1 ( t t 1 ) ] + 0.5 tanh [ 0.1 ( t t 2 ) ] } ,
| Φ general ( p , t ) = C e 0 ( p , t ) | e 0 , p + C g 1 ( p , t ) | g 1 , p k 1 + C g 2 ( p , t ) | g 2 , p + ( 1 ) l k 2 ,
P ( t ) = | p Ψ N C ( p , t ) | Φ general ( p , t ) | 2 ,

Metrics