Abstract

We theoretically investigate the influence of a coherent pump field on the propagation of a weak light pulse of a probe field in a four-level atomic system. Due to the modulation of the pump field, the light pulse can be manipulated from subluminal to superluminal with negligible distortion. This scheme can be realized in both the ultracold and Doppler-broadened atomic systems. We also demonstrate that the spectral linewidth with an anomalous dispersion is reduced by thermal averaging; therefore, one can obtain a larger negative group refractive index in room-temperature vapor than the largest value achieved in ultracold atomic gas.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kang, G. Hernandez, and Y. F. Zhu, “Superluminal and slow light propagation in cold atoms,” Phys. Rev. A 70, 011801 (2004).
    [CrossRef]
  2. H. Y. Tseng, J. Huang, and A. Adibi, “Expansion of the relative time delay by switching between slow and fast light using coherent population oscillation with semiconductors,” Appl. Phys. B 85, 493-501 (2006).
    [CrossRef]
  3. D. Dahan and G. Eisenstein, “Tunable all optical via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234-6249 (2005).
    [CrossRef] [PubMed]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  5. G. S. Agarwal and T. N. Dey, “Sub- and superluminal propagation of intense pulses in media with saturated and reverse absorption,” Phys. Rev. Lett. 92, 203901 (2004).
    [CrossRef] [PubMed]
  6. Z. Haghshenasfard, M. H. Naderi, and M. Soltanolkotabi, “Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose-Einstein condensate,” J. Phys. B 41, 165501 (2008).
    [CrossRef]
  7. J. Zhang, G. Hernandez, and Y. Zhu, “Copropagating superluminal and slow light manifested by electromagnetically assisted nonlinear optical processes,” Opt. Lett. 31, 2598-2600 (2006).
    [CrossRef] [PubMed]
  8. G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
    [CrossRef]
  9. H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and Xu Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68-75 (2005).
    [CrossRef]
  10. D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
    [CrossRef]
  11. Y. M. Golubev, T. Y. Golubeva, Y. V. Rostovtsev, M. O. Scully, “Control of group velocity of light via magnetic field,” Opt. Commun. 278, 350-362 (2007).
    [CrossRef]
  12. F. Carreño, O. G. Calderón, M. A. Antón, and I. Gonzalo, “Superluminal and slow light in Λ-type three-level atoms via squeezed vacuum and spontaneously generated coherence,” Phys. Rev. A 71, 063805 (2005).
    [CrossRef]
  13. M. Mahmoudi, M. Sahrai, and H. Tajalli, “The effects of incoherent pumping field on the phase control of group velocity,” J. Phys. B 39, 1825-1835 (2006).
    [CrossRef]
  14. M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields,” Phys. Lett. A 357, 66-71 (2006).
    [CrossRef]
  15. H. Kang, L. L. Wen, and Y. F. Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, 063806 (2003).
    [CrossRef]
  16. L. B. Kong, X. H. Tu, J. Wang, Y. F. Zhu, and M. S. Zhan, “Sub-Doppler spectral resolution in a resonantly driven four-level coherent medium,” Opt. Commun. 269, 362-369 (2007).
    [CrossRef]
  17. W. H. Xu and J. Y. Gao, “Influence of Doppler-broadening on absorption-dispersion properties in a resonant coherent medium,” Chin. Phys. 14, 2496-2502 (2005).
    [CrossRef]
  18. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a signal atomic transition line,” Phys. Rev. A 68, 013810 (2003).
    [CrossRef]
  19. E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, and G. R. Welch, “Absorption resonance and large negative delay in rubidium vapor with a buffer gas,” J. Opt. Soc. Am. B 21, 425-428 (2004).
    [CrossRef]
  20. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29-R32 (1992).
    [CrossRef] [PubMed]
  21. C. Y. Ye, A. S. Zibrov, Yu. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65, 043805 (2002).
    [CrossRef]
  22. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).
  23. S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically induced transparency medium due to Doppler averaging,” Phys. Rev. A 77, 063807 (2008).
    [CrossRef]
  24. C. G. B. Garrett and D. E. Mocumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305-313 (1970).
    [CrossRef]

2008 (2)

Z. Haghshenasfard, M. H. Naderi, and M. Soltanolkotabi, “Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose-Einstein condensate,” J. Phys. B 41, 165501 (2008).
[CrossRef]

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically induced transparency medium due to Doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[CrossRef]

2007 (2)

Y. M. Golubev, T. Y. Golubeva, Y. V. Rostovtsev, M. O. Scully, “Control of group velocity of light via magnetic field,” Opt. Commun. 278, 350-362 (2007).
[CrossRef]

L. B. Kong, X. H. Tu, J. Wang, Y. F. Zhu, and M. S. Zhan, “Sub-Doppler spectral resolution in a resonantly driven four-level coherent medium,” Opt. Commun. 269, 362-369 (2007).
[CrossRef]

2006 (4)

M. Mahmoudi, M. Sahrai, and H. Tajalli, “The effects of incoherent pumping field on the phase control of group velocity,” J. Phys. B 39, 1825-1835 (2006).
[CrossRef]

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields,” Phys. Lett. A 357, 66-71 (2006).
[CrossRef]

J. Zhang, G. Hernandez, and Y. Zhu, “Copropagating superluminal and slow light manifested by electromagnetically assisted nonlinear optical processes,” Opt. Lett. 31, 2598-2600 (2006).
[CrossRef] [PubMed]

H. Y. Tseng, J. Huang, and A. Adibi, “Expansion of the relative time delay by switching between slow and fast light using coherent population oscillation with semiconductors,” Appl. Phys. B 85, 493-501 (2006).
[CrossRef]

2005 (4)

D. Dahan and G. Eisenstein, “Tunable all optical via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234-6249 (2005).
[CrossRef] [PubMed]

H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and Xu Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68-75 (2005).
[CrossRef]

F. Carreño, O. G. Calderón, M. A. Antón, and I. Gonzalo, “Superluminal and slow light in Λ-type three-level atoms via squeezed vacuum and spontaneously generated coherence,” Phys. Rev. A 71, 063805 (2005).
[CrossRef]

W. H. Xu and J. Y. Gao, “Influence of Doppler-broadening on absorption-dispersion properties in a resonant coherent medium,” Chin. Phys. 14, 2496-2502 (2005).
[CrossRef]

2004 (3)

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, and G. R. Welch, “Absorption resonance and large negative delay in rubidium vapor with a buffer gas,” J. Opt. Soc. Am. B 21, 425-428 (2004).
[CrossRef]

H. Kang, G. Hernandez, and Y. F. Zhu, “Superluminal and slow light propagation in cold atoms,” Phys. Rev. A 70, 011801 (2004).
[CrossRef]

G. S. Agarwal and T. N. Dey, “Sub- and superluminal propagation of intense pulses in media with saturated and reverse absorption,” Phys. Rev. Lett. 92, 203901 (2004).
[CrossRef] [PubMed]

2003 (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a signal atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

H. Kang, L. L. Wen, and Y. F. Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, 063806 (2003).
[CrossRef]

2002 (1)

C. Y. Ye, A. S. Zibrov, Yu. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65, 043805 (2002).
[CrossRef]

2001 (2)

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

1992 (1)

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29-R32 (1992).
[CrossRef] [PubMed]

1970 (1)

C. G. B. Garrett and D. E. Mocumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305-313 (1970).
[CrossRef]

Adibi, A.

H. Y. Tseng, J. Huang, and A. Adibi, “Expansion of the relative time delay by switching between slow and fast light using coherent population oscillation with semiconductors,” Appl. Phys. B 85, 493-501 (2006).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and T. N. Dey, “Sub- and superluminal propagation of intense pulses in media with saturated and reverse absorption,” Phys. Rev. Lett. 92, 203901 (2004).
[CrossRef] [PubMed]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Antón, M. A.

F. Carreño, O. G. Calderón, M. A. Antón, and I. Gonzalo, “Superluminal and slow light in Λ-type three-level atoms via squeezed vacuum and spontaneously generated coherence,” Phys. Rev. A 71, 063805 (2005).
[CrossRef]

Bai, Y.

H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and Xu Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68-75 (2005).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Bortman-Arbiv, D.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Calderón, O. G.

F. Carreño, O. G. Calderón, M. A. Antón, and I. Gonzalo, “Superluminal and slow light in Λ-type three-level atoms via squeezed vacuum and spontaneously generated coherence,” Phys. Rev. A 71, 063805 (2005).
[CrossRef]

Carreño, F.

F. Carreño, O. G. Calderón, M. A. Antón, and I. Gonzalo, “Superluminal and slow light in Λ-type three-level atoms via squeezed vacuum and spontaneously generated coherence,” Phys. Rev. A 71, 063805 (2005).
[CrossRef]

Chen, Xu

H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and Xu Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68-75 (2005).
[CrossRef]

Dahan, D.

Dey, T. N.

G. S. Agarwal and T. N. Dey, “Sub- and superluminal propagation of intense pulses in media with saturated and reverse absorption,” Phys. Rev. Lett. 92, 203901 (2004).
[CrossRef] [PubMed]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Eisenstein, G.

Fan, S.

H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and Xu Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68-75 (2005).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29-R32 (1992).
[CrossRef] [PubMed]

Friedmann, H.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

Gao, J. Y.

W. H. Xu and J. Y. Gao, “Influence of Doppler-broadening on absorption-dispersion properties in a resonant coherent medium,” Chin. Phys. 14, 2496-2502 (2005).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett and D. E. Mocumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305-313 (1970).
[CrossRef]

Golubev, Y. M.

Y. M. Golubev, T. Y. Golubeva, Y. V. Rostovtsev, M. O. Scully, “Control of group velocity of light via magnetic field,” Opt. Commun. 278, 350-362 (2007).
[CrossRef]

Golubeva, T. Y.

Y. M. Golubev, T. Y. Golubeva, Y. V. Rostovtsev, M. O. Scully, “Control of group velocity of light via magnetic field,” Opt. Commun. 278, 350-362 (2007).
[CrossRef]

Gonzalo, I.

F. Carreño, O. G. Calderón, M. A. Antón, and I. Gonzalo, “Superluminal and slow light in Λ-type three-level atoms via squeezed vacuum and spontaneously generated coherence,” Phys. Rev. A 71, 063805 (2005).
[CrossRef]

Guo, H.

H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and Xu Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68-75 (2005).
[CrossRef]

Haghshenasfard, Z.

Z. Haghshenasfard, M. H. Naderi, and M. Soltanolkotabi, “Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose-Einstein condensate,” J. Phys. B 41, 165501 (2008).
[CrossRef]

Han, D.

H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and Xu Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68-75 (2005).
[CrossRef]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29-R32 (1992).
[CrossRef] [PubMed]

Hernandez, G.

Huang, J.

H. Y. Tseng, J. Huang, and A. Adibi, “Expansion of the relative time delay by switching between slow and fast light using coherent population oscillation with semiconductors,” Appl. Phys. B 85, 493-501 (2006).
[CrossRef]

Iftiquar, S. M.

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically induced transparency medium due to Doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).

Kang, H.

H. Kang, G. Hernandez, and Y. F. Zhu, “Superluminal and slow light propagation in cold atoms,” Phys. Rev. A 70, 011801 (2004).
[CrossRef]

H. Kang, L. L. Wen, and Y. F. Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, 063806 (2003).
[CrossRef]

Karve, G. R.

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically induced transparency medium due to Doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[CrossRef]

Kasapi, A.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29-R32 (1992).
[CrossRef] [PubMed]

Kim, J. B.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a signal atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Kim, K.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a signal atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Kim, S. K.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a signal atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Kong, L. B.

L. B. Kong, X. H. Tu, J. Wang, Y. F. Zhu, and M. S. Zhan, “Sub-Doppler spectral resolution in a resonantly driven four-level coherent medium,” Opt. Commun. 269, 362-369 (2007).
[CrossRef]

Lee, C.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a signal atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Mahmoudi, M.

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields,” Phys. Lett. A 357, 66-71 (2006).
[CrossRef]

M. Mahmoudi, M. Sahrai, and H. Tajalli, “The effects of incoherent pumping field on the phase control of group velocity,” J. Phys. B 39, 1825-1835 (2006).
[CrossRef]

Menon, S.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Mikhailov, E. E.

Mocumber, D. E.

C. G. B. Garrett and D. E. Mocumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305-313 (1970).
[CrossRef]

Moon, H. S.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a signal atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Naderi, M. H.

Z. Haghshenasfard, M. H. Naderi, and M. Soltanolkotabi, “Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose-Einstein condensate,” J. Phys. B 41, 165501 (2008).
[CrossRef]

Natarajan, V.

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically induced transparency medium due to Doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[CrossRef]

Rostovtsev, Y. V.

Y. M. Golubev, T. Y. Golubeva, Y. V. Rostovtsev, M. O. Scully, “Control of group velocity of light via magnetic field,” Opt. Commun. 278, 350-362 (2007).
[CrossRef]

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, and G. R. Welch, “Absorption resonance and large negative delay in rubidium vapor with a buffer gas,” J. Opt. Soc. Am. B 21, 425-428 (2004).
[CrossRef]

Rostovtsev, Yu. V.

C. Y. Ye, A. S. Zibrov, Yu. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65, 043805 (2002).
[CrossRef]

Sahrai, M.

M. Mahmoudi, M. Sahrai, and H. Tajalli, “The effects of incoherent pumping field on the phase control of group velocity,” J. Phys. B 39, 1825-1835 (2006).
[CrossRef]

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields,” Phys. Lett. A 357, 66-71 (2006).
[CrossRef]

Sautenkov, V. A.

Scully, M. O.

Y. M. Golubev, T. Y. Golubeva, Y. V. Rostovtsev, M. O. Scully, “Control of group velocity of light via magnetic field,” Opt. Commun. 278, 350-362 (2007).
[CrossRef]

C. Y. Ye, A. S. Zibrov, Yu. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65, 043805 (2002).
[CrossRef]

Soltanolkotabi, M.

Z. Haghshenasfard, M. H. Naderi, and M. Soltanolkotabi, “Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose-Einstein condensate,” J. Phys. B 41, 165501 (2008).
[CrossRef]

Sun, H.

H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and Xu Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68-75 (2005).
[CrossRef]

Tajalli, H.

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields,” Phys. Lett. A 357, 66-71 (2006).
[CrossRef]

M. Mahmoudi, M. Sahrai, and H. Tajalli, “The effects of incoherent pumping field on the phase control of group velocity,” J. Phys. B 39, 1825-1835 (2006).
[CrossRef]

Tseng, H. Y.

H. Y. Tseng, J. Huang, and A. Adibi, “Expansion of the relative time delay by switching between slow and fast light using coherent population oscillation with semiconductors,” Appl. Phys. B 85, 493-501 (2006).
[CrossRef]

Tu, X. H.

L. B. Kong, X. H. Tu, J. Wang, Y. F. Zhu, and M. S. Zhan, “Sub-Doppler spectral resolution in a resonantly driven four-level coherent medium,” Opt. Commun. 269, 362-369 (2007).
[CrossRef]

Wang, J.

L. B. Kong, X. H. Tu, J. Wang, Y. F. Zhu, and M. S. Zhan, “Sub-Doppler spectral resolution in a resonantly driven four-level coherent medium,” Opt. Commun. 269, 362-369 (2007).
[CrossRef]

Welch, G. R.

Wen, L. L.

H. Kang, L. L. Wen, and Y. F. Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, 063806 (2003).
[CrossRef]

Wilson-Gordon, A. D.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

Xu, W. H.

W. H. Xu and J. Y. Gao, “Influence of Doppler-broadening on absorption-dispersion properties in a resonant coherent medium,” Chin. Phys. 14, 2496-2502 (2005).
[CrossRef]

Ye, C. Y.

C. Y. Ye, A. S. Zibrov, Yu. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65, 043805 (2002).
[CrossRef]

Zhan, M. S.

L. B. Kong, X. H. Tu, J. Wang, Y. F. Zhu, and M. S. Zhan, “Sub-Doppler spectral resolution in a resonantly driven four-level coherent medium,” Opt. Commun. 269, 362-369 (2007).
[CrossRef]

Zhang, J.

Zhu, Y.

Zhu, Y. F.

L. B. Kong, X. H. Tu, J. Wang, Y. F. Zhu, and M. S. Zhan, “Sub-Doppler spectral resolution in a resonantly driven four-level coherent medium,” Opt. Commun. 269, 362-369 (2007).
[CrossRef]

H. Kang, G. Hernandez, and Y. F. Zhu, “Superluminal and slow light propagation in cold atoms,” Phys. Rev. A 70, 011801 (2004).
[CrossRef]

H. Kang, L. L. Wen, and Y. F. Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, 063806 (2003).
[CrossRef]

Zibrov, A. S.

C. Y. Ye, A. S. Zibrov, Yu. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65, 043805 (2002).
[CrossRef]

Appl. Phys. B (1)

H. Y. Tseng, J. Huang, and A. Adibi, “Expansion of the relative time delay by switching between slow and fast light using coherent population oscillation with semiconductors,” Appl. Phys. B 85, 493-501 (2006).
[CrossRef]

Chin. Phys. (1)

W. H. Xu and J. Y. Gao, “Influence of Doppler-broadening on absorption-dispersion properties in a resonant coherent medium,” Chin. Phys. 14, 2496-2502 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (2)

M. Mahmoudi, M. Sahrai, and H. Tajalli, “The effects of incoherent pumping field on the phase control of group velocity,” J. Phys. B 39, 1825-1835 (2006).
[CrossRef]

Z. Haghshenasfard, M. H. Naderi, and M. Soltanolkotabi, “Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose-Einstein condensate,” J. Phys. B 41, 165501 (2008).
[CrossRef]

Opt. Commun. (2)

Y. M. Golubev, T. Y. Golubeva, Y. V. Rostovtsev, M. O. Scully, “Control of group velocity of light via magnetic field,” Opt. Commun. 278, 350-362 (2007).
[CrossRef]

L. B. Kong, X. H. Tu, J. Wang, Y. F. Zhu, and M. S. Zhan, “Sub-Doppler spectral resolution in a resonantly driven four-level coherent medium,” Opt. Commun. 269, 362-369 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (2)

H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and Xu Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system,” Phys. Lett. A 335, 68-75 (2005).
[CrossRef]

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields,” Phys. Lett. A 357, 66-71 (2006).
[CrossRef]

Phys. Rev. A (10)

H. Kang, L. L. Wen, and Y. F. Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, 063806 (2003).
[CrossRef]

F. Carreño, O. G. Calderón, M. A. Antón, and I. Gonzalo, “Superluminal and slow light in Λ-type three-level atoms via squeezed vacuum and spontaneously generated coherence,” Phys. Rev. A 71, 063805 (2005).
[CrossRef]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29-R32 (1992).
[CrossRef] [PubMed]

C. Y. Ye, A. S. Zibrov, Yu. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65, 043805 (2002).
[CrossRef]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

H. Kang, G. Hernandez, and Y. F. Zhu, “Superluminal and slow light propagation in cold atoms,” Phys. Rev. A 70, 011801 (2004).
[CrossRef]

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a signal atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically induced transparency medium due to Doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[CrossRef]

C. G. B. Garrett and D. E. Mocumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305-313 (1970).
[CrossRef]

Phys. Rev. Lett. (1)

G. S. Agarwal and T. N. Dey, “Sub- and superluminal propagation of intense pulses in media with saturated and reverse absorption,” Phys. Rev. Lett. 92, 203901 (2004).
[CrossRef] [PubMed]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of a four-level atomic system. (b) Block diagram where the coupling ( ω c ) and probe ( ω p ) fields are copropagating and the coherent pump field ( ω s ) is counterpropagating inside the medium.

Fig. 2
Fig. 2

Real and imaginary parts of susceptibility χ versus probe frequency ω p in the presence of the coupling field Ω c and the pump field Ω s in hot atoms. The common parameters of the above curves are chosen as atomic density N = 2 × 10 11 cm 3 , 2 γ 2 π = 5.746 MHz , and γ 21 = 0.001 γ . Δ c = Δ s = 0 , and we assume the most probable velocity as υ p = 250 m s .

Fig. 3
Fig. 3

(a) Group refractive index n g at resonance of the probe field in the presence of the coupling field Ω c = 0.6 , 0.8 , 1.0 γ in cold atoms and in the presence of the coupling field Ω c = 0.9 γ in hot atoms. The inset shows the corresponding transmission of the probe field that propagates through a medium of length L = 1 cm . Other parameters are the same as in Fig. 2. (b) Effect of the velocity on probe absorption in the presence of the coupling and pump fields Ω c = 0.8 γ and Ω s = 1.2 γ .

Fig. 4
Fig. 4

Solid curve represents a Gaussian pulse propagating at speed c through 1 cm of vacuum (reference). Curves (i) and (ii) show the same pulse propagation through cold atoms of length 1 cm with time delays 0.36 μ s and 0.34 μ s , respectively. Curves (iii) and (iv) show the same pulse propagation through a 1 cm long hot atomic vapor with time delays 0.12 μ s and 0.14 μ s , respectively. We chose cold and hot atomic systems that have the same atomic density as N = 2 × 10 11 cm 3 ; other common parameters are the same as Fig. 2. The inset shows a magnified part of the same.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

H I = ( Δ c Δ p ) | 2 2 | Δ p | 3 3 | Δ s | 4 4 | [ g | 3 1 | + Ω c | 3 2 | + Ω s | 4 1 | + H.c. ] ,
ρ ̇ 22 = 2 γ 2 ρ 33 + 2 γ 4 ρ 44 + i Ω c ( ρ 32 ρ 23 ) ,
ρ ̇ 33 = 2 ( γ 1 + γ 2 ) ρ 33 + i g ( ρ 13 ρ 31 ) + i Ω c ( ρ 23 ρ 32 ) ,
ρ ̇ 44 = 2 ( γ 3 + γ 4 ) ρ 44 + i Ω s ( ρ 14 ρ 41 ) ,
ρ ̇ 31 = Γ 31 ρ 31 + i g ( ρ 11 ρ 33 ) + i Ω c ρ 21 i Ω s ρ 34 ,
ρ ̇ 32 = ( i Δ c γ 1 γ 2 ) ρ 32 + i g ρ 12 + i Ω c ( ρ 22 ρ 33 ) ,
ρ ̇ 21 = Γ 21 ρ 21 + i Ω c ρ 31 i g ρ 23 i Ω s ρ 24 ,
ρ ̇ 14 = ( i Δ s + γ 3 + γ 4 ) ρ 14 i Ω s ( ρ 11 ρ 44 ) + i g ρ 34 ,
ρ ̇ 24 = Γ 24 ρ 24 i Ω s ρ 21 + i Ω c ρ 34 ,
ρ ̇ 34 = Γ 34 ρ 34 i Ω s ρ 31 + i Ω c ρ 24 + i g ρ 14 ,
1 = ρ 11 + ρ 22 + ρ 33 + ρ 44 ,
ρ 31 ( 1 ) g = i ( ρ 33 ( 0 ) ρ 11 ( 0 ) ) M + Ω s R ρ 14 ( 0 ) + Ω c F ρ 23 ( 0 ) Γ 31 M + Ω c 2 F + Ω s 2 R ,
ρ 33 ( 0 ) = Ω s 2 Ω c 2 Ω s 2 ( 2 Ω c 2 + γ 2 + Δ c 2 ) + Ω c 2 ( 2 Ω s 2 + γ 2 + Δ s 2 ) ,
ρ 11 ( 0 ) = Ω s 2 + γ 2 + Δ s 2 Ω s 2 ρ 33 ( 0 ) ,
ρ 23 ( 0 ) = Δ c + i γ Ω c ρ 33 ( 0 ) ,
ρ 14 ( 0 ) = Δ s + i γ Ω s ρ 33 ( 0 ) .
χ = 3 π γ N + ρ 31 ( 1 ) g f ( v ) d v .
υ g = c 1 + 1 2 Re ( χ ) + ω p 2 Re ( χ ) ω p .
H I = ( 0 0 0 Ω s 0 Δ c k υ Ω c 0 0 Ω c 0 0 Ω s 0 0 Δ s k υ ) .
α 1 = ( ( k υ 2 ) 2 + Ω c 2 + ( k υ 2 ) 2 + Ω s 2 ) ,
α 2 = ( ( k υ 2 ) 2 + Ω c 2 ( k υ 2 ) 2 + Ω s 2 ) ,
α 3 = ( ( k υ 2 ) 2 + Ω c 2 ( k υ 2 ) 2 + Ω s 2 ) ,
α 4 = ( ( k υ 2 ) 2 + Ω c 2 + ( k υ 2 ) 2 + Ω s 2 ) .
E ( z , t ) = + ε ( 0 , ω p ) exp [ i ω p ( t z n ( ω p ) c ) ] d ω p ,

Metrics