Abstract

Azimuthally polarized beams, focused by a high-numerical-aperture (NA) objective lens, form a hollow intensity distribution near the focus, which is appropriate for trapping low-refractive-index particles, in contrast to common linearly polarized or radially polarized beams. In this paper, the field distribution of the azimuthally polarized beam focused by a high-NA objective is described by the vectorial diffraction integral, and then the radiation forces on spherical particles with different parameters such as radius and refractive index are calculated by the T-matrix method. Numerical results show that the azimuthally polarized beam not only can steadily trap low-refractive-index particles at the focus center but also can trap multiple high-refractive-index particles around the focus center by virtue of the hollow-ring configuration. The range of the sizes of low-refractive-index particles that can be trapped steadily are presented, corresponding to different parameters such as the NA of the objective and the relative refractive index, based on which the NA of the objective can be selected to trap the appropriate size of particles.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
    [CrossRef]
  2. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” in Proceedings of IEEE Conference on J. Sel. Top. Quantum Electron (IEEE, 2000), pp. 841-856.
  3. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689-1695 (1999).
    [CrossRef]
  4. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block,“Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721-727 (1993).
    [CrossRef]
  5. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometer steps,” Nature 368, 113-119 (1994).
    [CrossRef]
  6. M. Miyazaki and Y. Hayasaki, “Motion control of low-index microspheres in liquid based on optical repulsive force of a focused beam array,” Opt. Lett. 34, 821-823 (2009).
    [CrossRef]
  7. K. T. Gahagan and G. A. Swartzlander, Jr., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533-537 (1999).
    [CrossRef]
  8. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297-301 (2000).
    [CrossRef]
  9. X. Wang and M. G. Littman, “Laser cavity for generation of variable-radius rings of light,” Opt. Lett. 18, 767-768 (1993).
    [CrossRef]
  10. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221-223 (1992).
    [CrossRef]
  11. J. P. Yin, H. R. Noh, K. Lee, K. H. Kim, Y. Z. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287-292 (1997).
    [CrossRef]
  12. M. Gu, D. Morrish, and P. Ke, “Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam,” Appl. Phys. Lett. 77, 34-36 (2000).
    [CrossRef]
  13. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77-87 (2000).
    [CrossRef]
  14. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901-1-233901-4 (2003).
    [CrossRef]
  15. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1-7 (2000).
    [CrossRef]
  16. S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836-1-053836-6 (2007).
    [CrossRef]
  17. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358-379 (1959).
    [CrossRef]
  18. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377-3382 (2004).
    [CrossRef]
  19. P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am. 45, 1417-1429 (1969).
    [CrossRef]
  20. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825-839 (1971).
    [CrossRef]
  21. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).
  22. S. H. Yan and B. L. Yao, “Transverse trapping forces of focused Gaussian beam on ellipsoidal particles,” J. Opt. Soc. Am. B 24, 1596-1602 (2007).
    [CrossRef]
  23. J. A. Stratton, Electromagnetic Theory (New York, 1941).
  24. T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298-313 (1997).
    [CrossRef]

2009 (1)

2007 (2)

S. H. Yan and B. L. Yao, “Transverse trapping forces of focused Gaussian beam on ellipsoidal particles,” J. Opt. Soc. Am. B 24, 1596-1602 (2007).
[CrossRef]

S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836-1-053836-6 (2007).
[CrossRef]

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901-1-233901-4 (2003).
[CrossRef]

2000 (4)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297-301 (2000).
[CrossRef]

M. Gu, D. Morrish, and P. Ke, “Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam,” Appl. Phys. Lett. 77, 34-36 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77-87 (2000).
[CrossRef]

1999 (2)

K. T. Gahagan and G. A. Swartzlander, Jr., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533-537 (1999).
[CrossRef]

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689-1695 (1999).
[CrossRef]

1997 (2)

J. P. Yin, H. R. Noh, K. Lee, K. H. Kim, Y. Z. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287-292 (1997).
[CrossRef]

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298-313 (1997).
[CrossRef]

1994 (1)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometer steps,” Nature 368, 113-119 (1994).
[CrossRef]

1993 (2)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block,“Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721-727 (1993).
[CrossRef]

X. Wang and M. G. Littman, “Laser cavity for generation of variable-radius rings of light,” Opt. Lett. 18, 767-768 (1993).
[CrossRef]

1992 (1)

1986 (1)

1971 (1)

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825-839 (1971).
[CrossRef]

1969 (1)

P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am. 45, 1417-1429 (1969).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Arlt, J.

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297-301 (2000).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
[CrossRef]

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” in Proceedings of IEEE Conference on J. Sel. Top. Quantum Electron (IEEE, 2000), pp. 841-856.

Bjorkholm, J. E.

Block, S. M.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block,“Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721-727 (1993).
[CrossRef]

Brown, T. G.

Chu, S.

Dholakia, K.

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297-301 (2000).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901-1-233901-4 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Dziedzic, J. M.

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometer steps,” Nature 368, 113-119 (1994).
[CrossRef]

Gahagan, K. T.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Gu, M.

M. Gu, D. Morrish, and P. Ke, “Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam,” Appl. Phys. Lett. 77, 34-36 (2000).
[CrossRef]

Hayasaki, Y.

Heckenberg, N. R.

Higdon, P.

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298-313 (1997).
[CrossRef]

Jhe, W.

J. P. Yin, H. R. Noh, K. Lee, K. H. Kim, Y. Z. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287-292 (1997).
[CrossRef]

Juškaitis, R.

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298-313 (1997).
[CrossRef]

Ke, P.

M. Gu, D. Morrish, and P. Ke, “Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam,” Appl. Phys. Lett. 77, 34-36 (2000).
[CrossRef]

Kim, K. H.

J. P. Yin, H. R. Noh, K. Lee, K. H. Kim, Y. Z. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287-292 (1997).
[CrossRef]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

Lee, K.

J. P. Yin, H. R. Noh, K. Lee, K. H. Kim, Y. Z. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287-292 (1997).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901-1-233901-4 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Littman, M. G.

McDuff, R.

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689-1695 (1999).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

Miyazaki, M.

Morrish, D.

M. Gu, D. Morrish, and P. Ke, “Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam,” Appl. Phys. Lett. 77, 34-36 (2000).
[CrossRef]

Noh, H. R.

J. P. Yin, H. R. Noh, K. Lee, K. H. Kim, Y. Z. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287-292 (1997).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901-1-233901-4 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689-1695 (1999).
[CrossRef]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block,“Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721-727 (1993).
[CrossRef]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block,“Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721-727 (1993).
[CrossRef]

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689-1695 (1999).
[CrossRef]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometer steps,” Nature 368, 113-119 (1994).
[CrossRef]

Smith, C. P.

Smith, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689-1695 (1999).
[CrossRef]

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689-1695 (1999).
[CrossRef]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometer steps,” Nature 368, 113-119 (1994).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (New York, 1941).

Svoboda, K.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block,“Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721-727 (1993).
[CrossRef]

Swartzlander, G. A.

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

Wang, X.

Wang, Y. Z.

J. P. Yin, H. R. Noh, K. Lee, K. H. Kim, Y. Z. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287-292 (1997).
[CrossRef]

Waterman, P. C.

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825-839 (1971).
[CrossRef]

P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am. 45, 1417-1429 (1969).
[CrossRef]

White, A. G.

Wilson, T.

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298-313 (1997).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Yan, S. H.

S. H. Yan and B. L. Yao, “Transverse trapping forces of focused Gaussian beam on ellipsoidal particles,” J. Opt. Soc. Am. B 24, 1596-1602 (2007).
[CrossRef]

S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836-1-053836-6 (2007).
[CrossRef]

Yao, B. L.

S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836-1-053836-6 (2007).
[CrossRef]

S. H. Yan and B. L. Yao, “Transverse trapping forces of focused Gaussian beam on ellipsoidal particles,” J. Opt. Soc. Am. B 24, 1596-1602 (2007).
[CrossRef]

Yin, J. P.

J. P. Yin, H. R. Noh, K. Lee, K. H. Kim, Y. Z. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287-292 (1997).
[CrossRef]

Youngworth, K. S.

Zhan, Q.

Appl. Phys. Lett. (1)

M. Gu, D. Morrish, and P. Ke, “Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam,” Appl. Phys. Lett. 77, 34-36 (2000).
[CrossRef]

J. Acoust. Soc. Am. (1)

P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am. 45, 1417-1429 (1969).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (2)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block,“Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721-727 (1993).
[CrossRef]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometer steps,” Nature 368, 113-119 (1994).
[CrossRef]

Opt. Commun. (4)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297-301 (2000).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141, 298-313 (1997).
[CrossRef]

J. P. Yin, H. R. Noh, K. Lee, K. H. Kim, Y. Z. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287-292 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (1)

S. H. Yan and B. L. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836-1-053836-6 (2007).
[CrossRef]

Phys. Rev. D (1)

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825-839 (1971).
[CrossRef]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901-1-233901-4 (2003).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Science (1)

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689-1695 (1999).
[CrossRef]

Other (3)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” in Proceedings of IEEE Conference on J. Sel. Top. Quantum Electron (IEEE, 2000), pp. 841-856.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

J. A. Stratton, Electromagnetic Theory (New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics