Abstract

The semiconductor disk laser (SDL) is a versatile laser source offering multiwatt-level output powers and diffraction limited beams. While an approach to thermal management based on substrate removal has led to tens of watts of output power in the 1μm region, the use of intracavity diamond heatspreaders for thermal management has enabled multiwatt performance levels to be achieved at wavelengths from the red to the mid-infrared. The modeling presented indicates that this dichotomy in approach arises from the ability of the heatspreader approach to bypass the thermal resistance of the mirror structure built into the SDL. The power scaling limitations of SDLs with heatspreaders are explored: nonaxial heat flow in the heatspreader is shown to limit the power scaling with pump spot radius. The critical roles of the pump spot size and output coupling on efficiency are experimentally investigated. An output power of 7 W in a 1060 nm SDL is achieved with the maximum output power achieved at a pump spot radius of 85μm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
    [CrossRef]
  2. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, R75-R85 (2004).
    [CrossRef]
  3. J. V. Moloney, J. Hader, S. W. Koch, L. Fan, C. Hessenius, M. Fallahi, and W. Stoltz, “Closed-loop quantum design of a multi-watt 1178 nm VECSEL,” in European Conference on Lasers and Electro-Optics (2007).
    [CrossRef]
  4. S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513-1524 (1989).
    [CrossRef]
  5. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
    [CrossRef]
  6. J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
    [CrossRef]
  7. J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
    [CrossRef]
  8. J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).
  9. J. L. A. Chilla, H. Zhou, M. K. Reed, and L. Spinelli, “Recent advances in optically pumped semiconductor lasers,” Proc. SPIE 6451, 645109 (2007).
    [CrossRef]
  10. S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620-3622 (2003).
    [CrossRef]
  11. K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
    [CrossRef]
  12. M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
    [CrossRef]
  13. A. Harkonen, J. Rautiainen, M. Guina, J. Konttinen, P. Tuomisto, L. Orsila, M. Pessa, and O. G. Okhotnikov, “High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm,” Opt. Express 15, 3224-3229 (2007).
    [CrossRef] [PubMed]
  14. J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
    [CrossRef]
  15. H. Lindberg, A. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett. 40, 601-602 (2004).
    [CrossRef]
  16. D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
    [CrossRef]
  17. B. Rosener, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 502-504 (2008).
    [CrossRef]
  18. J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).
  19. A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
    [CrossRef]
  20. E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” J. Appl. Phys. 94, 7397-7401 (2003).
    [CrossRef]
  21. N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).
  22. Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77, 651-653 (2000).
    [CrossRef]
  23. H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett. 16, 1233-1235 (2004).
    [CrossRef]
  24. A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
    [CrossRef]
  25. S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
    [CrossRef]
  26. J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77-81 (2005).
    [CrossRef] [PubMed]
  27. M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
    [CrossRef]
  28. W. J. Alford, T. D. Raymond, and A. A. Allerman, “High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser,” J. Opt. Soc. Am. B 19, 663-666 (2002).
    [CrossRef]
  29. J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
    [CrossRef]
  30. N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
    [CrossRef]
  31. J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
    [CrossRef]
  32. A. J. Maclean, Power Scaling and Wavelength Control of Semiconductor Disk Lasers (University of Strathclyde, 2008).
  33. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
    [CrossRef]
  34. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
    [CrossRef]
  35. R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199-208 (2005).
    [CrossRef]
  36. R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002).
    [CrossRef]
  37. L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
    [CrossRef]
  38. A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Appl. Phys. Lett. 83, 1313-1315 (2003).
    [CrossRef]
  39. A. Harkonen, M. Guina, O. Okhotnikov, K. Rossner, M. Hummer, T. Lehnhardt, M. Muller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Opt. Express 14, 6479-6484 (2006).
    [CrossRef] [PubMed]
  40. A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
    [CrossRef]
  41. H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
    [CrossRef]
  42. J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
    [CrossRef]
  43. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).
  44. P. M. Smowton and P. Blood, “The differential efficiency of quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 491-498 (1997).
    [CrossRef]
  45. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44, 709-717 (2008).
    [CrossRef]
  46. E. J. Saarinen, A. Harkonen, S. Suomalainen, and O. G. Okhotnikov, “Power scalable semiconductor disk laser using multiple gain cavity,” Opt. Express 14, 12868-12871 (2006).
    [CrossRef] [PubMed]
  47. L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, J. T. Murray, R. Bedford, W. Stolz, and S. W. Koch, “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett. 31, 3612-3614 (2006).
    [CrossRef] [PubMed]

2009 (1)

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

2008 (6)

B. Rosener, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 502-504 (2008).
[CrossRef]

A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
[CrossRef]

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
[CrossRef]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44, 709-717 (2008).
[CrossRef]

2007 (5)

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, M. K. Reed, and L. Spinelli, “Recent advances in optically pumped semiconductor lasers,” Proc. SPIE 6451, 645109 (2007).
[CrossRef]

A. Harkonen, J. Rautiainen, M. Guina, J. Konttinen, P. Tuomisto, L. Orsila, M. Pessa, and O. G. Okhotnikov, “High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm,” Opt. Express 15, 3224-3229 (2007).
[CrossRef] [PubMed]

2006 (9)

A. Harkonen, M. Guina, O. Okhotnikov, K. Rossner, M. Hummer, T. Lehnhardt, M. Muller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Opt. Express 14, 6479-6484 (2006).
[CrossRef] [PubMed]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, J. T. Murray, R. Bedford, W. Stolz, and S. W. Koch, “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett. 31, 3612-3614 (2006).
[CrossRef] [PubMed]

E. J. Saarinen, A. Harkonen, S. Suomalainen, and O. G. Okhotnikov, “Power scalable semiconductor disk laser using multiple gain cavity,” Opt. Express 14, 12868-12871 (2006).
[CrossRef] [PubMed]

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

2005 (5)

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199-208 (2005).
[CrossRef]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

2004 (5)

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

H. Lindberg, A. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett. 40, 601-602 (2004).
[CrossRef]

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, R75-R85 (2004).
[CrossRef]

J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett. 16, 1233-1235 (2004).
[CrossRef]

2003 (4)

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Appl. Phys. Lett. 83, 1313-1315 (2003).
[CrossRef]

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” J. Appl. Phys. 94, 7397-7401 (2003).
[CrossRef]

2002 (2)

R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002).
[CrossRef]

W. J. Alford, T. D. Raymond, and A. A. Allerman, “High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser,” J. Opt. Soc. Am. B 19, 663-666 (2002).
[CrossRef]

2000 (1)

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77, 651-653 (2000).
[CrossRef]

1999 (2)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

1997 (1)

P. M. Smowton and P. Blood, “The differential efficiency of quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 491-498 (1997).
[CrossRef]

1994 (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

1989 (1)

S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513-1524 (1989).
[CrossRef]

Abram, R.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Albrecht, T.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Alford, W. J.

Allerman, A. A.

Aschwanden, A.

R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002).
[CrossRef]

Bauer, D.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

Bedford, R.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, J. T. Murray, R. Bedford, W. Stolz, and S. W. Koch, “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett. 31, 3612-3614 (2006).
[CrossRef] [PubMed]

Bedford, R. G.

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199-208 (2005).
[CrossRef]

Bengtsson, J.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett. 16, 1233-1235 (2004).
[CrossRef]

Beyertt, S. S.

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Birch, R. B.

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44, 709-717 (2008).
[CrossRef]

Blood, P.

P. M. Smowton and P. Blood, “The differential efficiency of quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 491-498 (1997).
[CrossRef]

Brauch, U.

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Brick, P.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Appl. Phys. Lett. 83, 1313-1315 (2003).
[CrossRef]

Burns, D.

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44, 709-717 (2008).
[CrossRef]

A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
[CrossRef]

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
[CrossRef]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

Butterworth, S.

J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).

Calvez, S.

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
[CrossRef]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Caprara, A. L.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).

Charles, J.

J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).

Chilla, J. L. A.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, M. K. Reed, and L. Spinelli, “Recent advances in optically pumped semiconductor lasers,” Proc. SPIE 6451, 645109 (2007).
[CrossRef]

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199-208 (2005).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).

Cho, S.

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Cho, S. H.

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Coldren, L. A.

S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513-1524 (1989).
[CrossRef]

Corzine, S. W.

S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513-1524 (1989).
[CrossRef]

Dawson, M. D.

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
[CrossRef]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

Ecker, I.

E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” J. Appl. Phys. 94, 7397-7401 (2003).
[CrossRef]

Fallahi, M.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, J. T. Murray, R. Bedford, W. Stolz, and S. W. Koch, “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett. 31, 3612-3614 (2006).
[CrossRef] [PubMed]

J. V. Moloney, J. Hader, S. W. Koch, L. Fan, C. Hessenius, M. Fallahi, and W. Stoltz, “Closed-loop quantum design of a multi-watt 1178 nm VECSEL,” in European Conference on Lasers and Electro-Optics (2007).
[CrossRef]

Fan, L.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, J. T. Murray, R. Bedford, W. Stolz, and S. W. Koch, “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett. 31, 3612-3614 (2006).
[CrossRef] [PubMed]

J. V. Moloney, J. Hader, S. W. Koch, L. Fan, C. Hessenius, M. Fallahi, and W. Stoltz, “Closed-loop quantum design of a multi-watt 1178 nm VECSEL,” in European Conference on Lasers and Electro-Optics (2007).
[CrossRef]

Ferguson, A. I.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

Fischer, M.

Forchel, A.

Foreman, H. D.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, R75-R85 (2004).
[CrossRef]

Garnache, A.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, R75-R85 (2004).
[CrossRef]

Geels, R. S.

S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513-1524 (1989).
[CrossRef]

Gerster, E.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

H. Lindberg, A. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett. 40, 601-602 (2004).
[CrossRef]

E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” J. Appl. Phys. 94, 7397-7401 (2003).
[CrossRef]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Giet, S.

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

Gini, E.

R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002).
[CrossRef]

Govorkov, S. V.

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

Guina, A.

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

Guina, M.

Hader, J.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, J. T. Murray, R. Bedford, W. Stolz, and S. W. Koch, “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett. 31, 3612-3614 (2006).
[CrossRef] [PubMed]

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Appl. Phys. Lett. 83, 1313-1315 (2003).
[CrossRef]

J. V. Moloney, J. Hader, S. W. Koch, L. Fan, C. Hessenius, M. Fallahi, and W. Stoltz, “Closed-loop quantum design of a multi-watt 1178 nm VECSEL,” in European Conference on Lasers and Electro-Optics (2007).
[CrossRef]

Hahn, C.

E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” J. Appl. Phys. 94, 7397-7401 (2003).
[CrossRef]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

Haring, R.

R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002).
[CrossRef]

Harkonen, A.

Hastie, J. E.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Hempler, N.

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

Hessenius, C.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

J. V. Moloney, J. Hader, S. W. Koch, L. Fan, C. Hessenius, M. Fallahi, and W. Stoltz, “Closed-loop quantum design of a multi-watt 1178 nm VECSEL,” in European Conference on Lasers and Electro-Optics (2007).
[CrossRef]

Holm, M. A.

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

Hoogland, S. H.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, R75-R85 (2004).
[CrossRef]

Hopkins, J. M.

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
[CrossRef]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Hopkins, J. -M.

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Hummer, M.

Hunziker, L. E.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

Hwang, S. M.

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

Ihli, C.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

Jeon, C. W.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Jouhti, T.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

Kaneda, Y.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

Keller, U.

R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002).
[CrossRef]

Kemp, A. J.

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44, 709-717 (2008).
[CrossRef]

A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
[CrossRef]

A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
[CrossRef]

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Kim, G.

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Kim, G. B.

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

Kim, J.

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Kim, J. Y.

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

Kim, J. -Y.

A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
[CrossRef]

Kim, K.

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Kim, K. S.

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

Kim, T.

A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
[CrossRef]

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Koch, S. W.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, J. T. Murray, R. Bedford, W. Stolz, and S. W. Koch, “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett. 31, 3612-3614 (2006).
[CrossRef] [PubMed]

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Appl. Phys. Lett. 83, 1313-1315 (2003).
[CrossRef]

J. V. Moloney, J. Hader, S. W. Koch, L. Fan, C. Hessenius, M. Fallahi, and W. Stoltz, “Closed-loop quantum design of a multi-watt 1178 nm VECSEL,” in European Conference on Lasers and Electro-Optics (2007).
[CrossRef]

Kohler, K.

B. Rosener, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 502-504 (2008).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

Köhler, K.

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

Kolesik, M.

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199-208 (2005).
[CrossRef]

Konttinen, J.

Krysa, A. B.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

Kubler, T.

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Kunert, B.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

Laakso, A.

Larsson, A.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

H. Lindberg, A. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett. 40, 601-602 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett. 16, 1233-1235 (2004).
[CrossRef]

Lee, J.

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Lee, J. H.

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Lee, S.

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Lee, S. M.

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

Lehnhardt, T.

Leinonen, T.

Li, H.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

Liau, Z. L.

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77, 651-653 (2000).
[CrossRef]

Lim, S.

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Lim, S. I.

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

Lim, S. J.

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

Lindberg, H.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

H. Lindberg, A. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett. 40, 601-602 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett. 16, 1233-1235 (2004).
[CrossRef]

Lorch, S.

E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” J. Appl. Phys. 94, 7397-7401 (2003).
[CrossRef]

Luft, J.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Lutgen, S.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Appl. Phys. Lett. 83, 1313-1315 (2003).
[CrossRef]

Lyytikainen, J.

Maclean, A. J.

A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
[CrossRef]

A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
[CrossRef]

A. J. Maclean, Power Scaling and Wavelength Control of Semiconductor Disk Lasers (University of Strathclyde, 2008).

Mahnke, G. J.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

Manz, C.

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

B. Rosener, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 502-504 (2008).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

Menzel, S.

E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” J. Appl. Phys. 94, 7397-7401 (2003).
[CrossRef]

Millar, P.

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44, 709-717 (2008).
[CrossRef]

Moloney, J. V.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, J. T. Murray, R. Bedford, W. Stolz, and S. W. Koch, “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett. 31, 3612-3614 (2006).
[CrossRef] [PubMed]

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199-208 (2005).
[CrossRef]

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Appl. Phys. Lett. 83, 1313-1315 (2003).
[CrossRef]

J. V. Moloney, J. Hader, S. W. Koch, L. Fan, C. Hessenius, M. Fallahi, and W. Stoltz, “Closed-loop quantum design of a multi-watt 1178 nm VECSEL,” in European Conference on Lasers and Electro-Optics (2007).
[CrossRef]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

Morier-Genoud, F.

R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002).
[CrossRef]

Morton, L. G.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

Moser, R.

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

Muller, M.

Murray, J.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

Murray, J. T.

Nelson, T. R.

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199-208 (2005).
[CrossRef]

Okhotnikov, O.

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

A. Harkonen, M. Guina, O. Okhotnikov, K. Rossner, M. Hummer, T. Lehnhardt, M. Muller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-μm,” Opt. Express 14, 6479-6484 (2006).
[CrossRef] [PubMed]

Okhotnikov, O. G.

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Orsila, L.

Park, Y.

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Park, Y. J.

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Paschotta, R.

R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002).
[CrossRef]

Pessa, M.

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

A. Harkonen, J. Rautiainen, M. Guina, J. Konttinen, P. Tuomisto, L. Orsila, M. Pessa, and O. G. Okhotnikov, “High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm,” Opt. Express 15, 3224-3229 (2007).
[CrossRef] [PubMed]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77-81 (2005).
[CrossRef] [PubMed]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

Rattunde, M.

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

B. Rosener, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 502-504 (2008).
[CrossRef]

A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

Rautiainen, J.

Raymond, T. D.

Rebut, M.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

Reed, M. K.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, M. K. Reed, and L. Spinelli, “Recent advances in optically pumped semiconductor lasers,” Proc. SPIE 6451, 645109 (2007).
[CrossRef]

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199-208 (2005).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).

Reill, W.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Riis, E.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

Roberts, J. S.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

Rosener, B.

B. Rosener, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 502-504 (2008).
[CrossRef]

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

Rossner, K.

Saarinen, E. J.

Schulz, N.

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

B. Rosener, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 502-504 (2008).
[CrossRef]

A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

Scott, J. W.

S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513-1524 (1989).
[CrossRef]

Shim, J.

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

Shou, Q.

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

Shu, Q. -Z.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

Smith, S. A.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

Smowton, P. M.

P. M. Smowton and P. Blood, “The differential efficiency of quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 491-498 (1997).
[CrossRef]

Spath, W.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

Spinelli, L.

J. L. A. Chilla, H. Zhou, M. K. Reed, and L. Spinelli, “Recent advances in optically pumped semiconductor lasers,” Proc. SPIE 6451, 645109 (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

Stoltz, W.

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

J. V. Moloney, J. Hader, S. W. Koch, L. Fan, C. Hessenius, M. Fallahi, and W. Stoltz, “Closed-loop quantum design of a multi-watt 1178 nm VECSEL,” in European Conference on Lasers and Electro-Optics (2007).
[CrossRef]

Stolz, W.

Strassner, A.

H. Lindberg, A. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett. 40, 601-602 (2004).
[CrossRef]

Strassner, M.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett. 16, 1233-1235 (2004).
[CrossRef]

Sun, H. D.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

Suomalainen, S.

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

E. J. Saarinen, A. Harkonen, S. Suomalainen, and O. G. Okhotnikov, “Power scalable semiconductor disk laser using multiple gain cavity,” Opt. Express 14, 12868-12871 (2006).
[CrossRef] [PubMed]

Svelto, O.

O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).

Tropper, A. C.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, R75-R85 (2004).
[CrossRef]

Tuomisto, P.

Unger, P.

E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” J. Appl. Phys. 94, 7397-7401 (2003).
[CrossRef]

Valentine, G. J.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

Voss, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Wagner, J.

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

B. Rosener, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 502-504 (2008).
[CrossRef]

A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

Weiss, E.

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

Wilcox, K. G.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, R75-R85 (2004).
[CrossRef]

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Yan, R. H.

S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513-1524 (1989).
[CrossRef]

Yoo, J.

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

Yoo, J. R.

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

Zakharian, A. R.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, J. T. Murray, R. Bedford, W. Stolz, and S. W. Koch, “Multichip vertical-external-cavity surface-emitting lasers: a coherent power scaling scheme,” Opt. Lett. 31, 3612-3614 (2006).
[CrossRef] [PubMed]

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Appl. Phys. Lett. 83, 1313-1315 (2003).
[CrossRef]

Zeitschel, A.

J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).

Zhou, H.

J. L. A. Chilla, H. Zhou, M. K. Reed, and L. Spinelli, “Recent advances in optically pumped semiconductor lasers,” Proc. SPIE 6451, 645109 (2007).
[CrossRef]

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

Appl. Phys. B (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Appl. Phys. Lett. (6)

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett. 77, 651-653 (2000).
[CrossRef]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

K. S. Kim, J. R. Yoo, S. H. Cho, S. M. Lee, S. J. Lim, J. Y. Kim, J. H. Lee, T. Kim, and Y. J. Park, “1060 nm vertical-external-cavity surface-emitting lasers with an optical-to-optical efficiency of 44% at room temperature,” Appl. Phys. Lett. 88, 091107 (2006).
[CrossRef]

J. Yoo, K. Kim, S. Lee, S. Lim, G. Kim, J. Kim, S. Cho, J. Lee, T. Kim, and Y. Park, “Gain structure optimization of vertical external cavity surface emitting laser at 920 nm,” Appl. Phys. Lett. 89, 131125 (2006).
[CrossRef]

A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, and S. Lutgen, “Experimental and theoretical analysis of optically pumped semiconductor disk lasers,” Appl. Phys. Lett. 83, 1313-1315 (2003).
[CrossRef]

Electron. Lett. (3)

J. Y. Kim, S. Cho, S. M. Lee, G. B. Kim, J. Lee, J. Yoo, K. S. Kim, T. Kim, and Y. Park, “Highly efficient green VECSEL with intra-cavity diamond heat spreader,” Electron. Lett. 43, 105-106 (2007).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40, 30-31 (2004).
[CrossRef]

H. Lindberg, A. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett. 40, 601-602 (2004).
[CrossRef]

IEEE J. Quantum Electron. (6)

A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader,” IEEE J. Quantum Electron. 44, 216-225 (2008).
[CrossRef]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie,S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41, 148-155 (2005).
[CrossRef]

S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513-1524 (1989).
[CrossRef]

R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High-power passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002).
[CrossRef]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44, 709-717 (2008).
[CrossRef]

A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron. 44, 125-135 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
[CrossRef]

P. M. Smowton and P. Blood, “The differential efficiency of quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 491-498 (1997).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561-573 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15, 894-896 (2003).
[CrossRef]

M. Fallahi, L. Fan, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stoltz, S. W. Koch, J. Murray, and R. Bedford, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 1700-1702 (2008).
[CrossRef]

B. Rosener, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “High-power high-brightness operation of a 2.25-μm (AlGaIn)(AsSb)-based barrier-pumped vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20, 502-504 (2008).
[CrossRef]

J. Y. Kim, S. Cho, J. Lee, G. B. Kim, S. I. Lim, J. Yoo, K. S. Kim, S. M. Lee, J. Shim, T. Kim, and Y. Park, “A measurement of modal gain profile and its effect on the lasing performance in vertical-external-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 18, 2496-2498 (2006).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm,” IEEE Photon. Technol. Lett. 18, 1070-1072 (2006).
[CrossRef]

J. H. Lee, J. Y. Kim, S. M. Lee, J. R. Yoo, K. S. Kim, S. H. Cho, S. J. Lim, G. B. Kim, S. M. Hwang, T. Kim, and Y. J. Park, “9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 18, 2117-2119 (2006).
[CrossRef]

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett. 16, 1233-1235 (2004).
[CrossRef]

J. Appl. Phys. (1)

E. Gerster, I. Ecker, S. Lorch, C. Hahn, S. Menzel, and P. Unger, “Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser,” J. Appl. Phys. 94, 7397-7401 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D 37, R75-R85 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (7)

S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, A. Guina, O. Okhotnikov, and M. Pessa, “Comparison of thermal management techniques for semiconductor disk lasers,” Proc. SPIE 6871, 687115 (2008).
[CrossRef]

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199-208 (2005).
[CrossRef]

L. E. Hunziker, Q.-Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. L. A. Chilla, A. L. Caprara, H. Zhou, E. Weiss, and M. K. Reed, “Power-scaling of optically-pumped semiconductor lasers,” Proc. SPIE 6451, 64510A (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, “Blue & green optically-pumped semiconductor lasers for display,” Proc. SPIE 41, 5740-5746 (2005).

D. Burns, J. M. Hopkins, A. J. Kemp, N. Schulz, C. Manz, K. Köhler, M. Rattunde, and J. Wagner, “Recent developments in high-power, short-wave mid-infrared semiconductor disk lasers,” Proc. SPIE 7913, 719311 (2009).
[CrossRef]

J. L. A. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” Proc. SPIE 5332, 146-150 (2004).

J. L. A. Chilla, H. Zhou, M. K. Reed, and L. Spinelli, “Recent advances in optically pumped semiconductor lasers,” Proc. SPIE 6451, 645109 (2007).
[CrossRef]

Other (4)

N. Hempler, J.-M. Hopkins, M. Rattunde, B. Rosener, R. Moser, C. Manz, K. Kohler, J. Wagner, and D. Burns, “Tuning and brightness optimization of high-performance GaSb-based semiconductor disk lasers from 1.86 to 2.80 μm,” in European Conference on Lasers and Electro-Optics (2009).

J. V. Moloney, J. Hader, S. W. Koch, L. Fan, C. Hessenius, M. Fallahi, and W. Stoltz, “Closed-loop quantum design of a multi-watt 1178 nm VECSEL,” in European Conference on Lasers and Electro-Optics (2007).
[CrossRef]

A. J. Maclean, Power Scaling and Wavelength Control of Semiconductor Disk Lasers (University of Strathclyde, 2008).

O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of SDL: (a) active device structure, (b) cavity configuration, and (c) redshift of reflectivity and gain spectra.

Fig. 2
Fig. 2

Range of output wavelengths demonstrated with SDL technology [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

Fig. 3
Fig. 3

Schematic of thermal management techniques: left, as grown; middle, substrate removed; right, heatspreader approach.

Fig. 4
Fig. 4

Schematic of mounting arrangements for the three SDL setups modeled: (a) as-grown device, (b) substrate removed, and (c) intracavity heatspreader. Left edge is the axis of rotational symmetry; bottom face is held at zero temperature.

Fig. 5
Fig. 5

Modeled maximum temperature rise in the SDL chip for 1 W deposited heat comparing different thermal management techniques with the material systems required for different wavelengths (dashed curves only for clarity).

Fig. 6
Fig. 6

Maximum temperature rise in gain region as pump spot size is increased at constant pump intensity of 32 k   W / cm 2 for two thermal management techniques and two pump intensity profiles.

Fig. 7
Fig. 7

Ratio of the averaged temperature rise in the gain region of a thin device (soldered to diamond and copper submounts) to the averaged temperature rise in the gain region of a device with a diamond heatspreader. Points are plotted for different SDL designs operating at different wavelengths [5, 6, 14, 19, 24, 39, 40, 41] and for various pump spot radii. For points above the dashed curve the temperature rise is higher in the thin device case.

Fig. 8
Fig. 8

Laser slope efficiency (diamonds) and threshold pump power (squares) as the output coupler transmission is changed between 1% and 20%. Solid curve shows expected trend in slope efficiency based on ratio of useful to total loss (dashed curve only for clarity).

Fig. 9
Fig. 9

Output power, slope efficiency, and threshold pump power as SDL mount temperature is varied.

Fig. 10
Fig. 10

Beam propagation parameter ( M 2 ) , output power for 9 W of pump power, and threshold pump power of the SDL as the cavity length is changed to vary the ratio of the laser mode to the pump mode (dashed curves only for clarity).

Fig. 11
Fig. 11

Power transfer characteristics of the SDL as the pump spot radius is varied.

Fig. 12
Fig. 12

Maximum output power and slope efficiency of the SDL operating with different pump spot sizes.

Tables (1)

Tables Icon

Table 1 Summary of Parameters Used in Thermal Model a

Metrics