Abstract

We report broadband downconversion from ultraviolet to near-infrared in Yb3+-doped oxygen-deficient SrOAl2O3GeO2 glasses. Oxygen-deficient centers are introduced in germanate glasses by adding metal Al instead of corresponding oxide (Al2O3). Tunable luminescence related to these defects is observed. Conversion of broadband ultraviolet light to blue-green tunable luminescence and to near-infrared emission is detected in glasses. The energy transfer efficiency increases with increasing Yb2O3 concentration. The dependence of energy transfer efficiency on wavelength is also discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2, 105-109 (2008).
    [CrossRef]
  2. J. Bisquert, “Photovoltaics: The two sides of solar energy,” Nat. Photonics 2, 648-649 (2008).
    [CrossRef]
  3. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668-1674 (2002).
    [CrossRef]
  4. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189-1207 (2006).
    [CrossRef]
  5. C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
    [CrossRef]
  6. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 1-5 (2009).
    [CrossRef]
  7. S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989-8994 (2008).
    [CrossRef] [PubMed]
  8. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33, 1884-1886 (2008).
    [CrossRef] [PubMed]
  9. Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
    [CrossRef]
  10. L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
    [CrossRef]
  11. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106, 043101 (2009).
    [CrossRef]
  12. S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
    [CrossRef]
  13. S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
    [CrossRef]
  14. P. Szuromi and D. Clery, “Control and use of defects in materials,” Science 281, 939-940 (1998).
    [CrossRef]
  15. G. Lin, B. Zhu, S. Zhou, H. Yang, and J. Qiu, “Tunable luminescence of CaO-Al2O3-GeO2 glasses,” Opt. Express 15, 16980-16985 (2007).
    [CrossRef] [PubMed]
  16. H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B 46, 11445 (1992).
    [CrossRef]
  17. D. Chen, Y. Wang, Y. Yu, and E. Ma, “Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals,” Mater. Chem. Phys. 101, 464-469 (2007).
    [CrossRef]
  18. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119 (2005).
    [CrossRef]

2009 (4)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 1-5 (2009).
[CrossRef]

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106, 043101 (2009).
[CrossRef]

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

2008 (5)

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989-8994 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33, 1884-1886 (2008).
[CrossRef] [PubMed]

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2, 105-109 (2008).
[CrossRef]

J. Bisquert, “Photovoltaics: The two sides of solar energy,” Nat. Photonics 2, 648-649 (2008).
[CrossRef]

2007 (4)

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

G. Lin, B. Zhu, S. Zhou, H. Yang, and J. Qiu, “Tunable luminescence of CaO-Al2O3-GeO2 glasses,” Opt. Express 15, 16980-16985 (2007).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, and E. Ma, “Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals,” Mater. Chem. Phys. 101, 464-469 (2007).
[CrossRef]

2006 (1)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189-1207 (2006).
[CrossRef]

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119 (2005).
[CrossRef]

2002 (1)

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

1998 (1)

P. Szuromi and D. Clery, “Control and use of defects in materials,” Science 281, 939-940 (1998).
[CrossRef]

1992 (1)

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B 46, 11445 (1992).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 1-5 (2009).
[CrossRef]

Abe, Y.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B 46, 11445 (1992).
[CrossRef]

Arkhipov, V.

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Beaucarne, G.

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Bisquert, J.

J. Bisquert, “Photovoltaics: The two sides of solar energy,” Nat. Photonics 2, 648-649 (2008).
[CrossRef]

Cañizo, C. D.

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Chen, D.

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33, 1884-1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, and E. Ma, “Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals,” Mater. Chem. Phys. 101, 464-469 (2007).
[CrossRef]

Chen, J.

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989-8994 (2008).
[CrossRef] [PubMed]

Clery, D.

P. Szuromi and D. Clery, “Control and use of defects in materials,” Science 281, 939-940 (1998).
[CrossRef]

den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Fan, X.

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

Green, M. A.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

Gregorkiewicz, T.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Hosono, H.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B 46, 11445 (1992).
[CrossRef]

Huang, P.

Izeddin, I.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Jiang, Z.

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Kawazoe, H.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B 46, 11445 (1992).
[CrossRef]

Kinser, D. L.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B 46, 11445 (1992).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Lakshminarayana, G.

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989-8994 (2008).
[CrossRef] [PubMed]

Lin, G.

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

G. Lin, B. Zhu, S. Zhou, H. Yang, and J. Qiu, “Tunable luminescence of CaO-Al2O3-GeO2 glasses,” Opt. Express 15, 16980-16985 (2007).
[CrossRef] [PubMed]

Liu, Y.

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

Luo, J.

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989-8994 (2008).
[CrossRef] [PubMed]

Ma, E.

D. Chen, Y. Wang, Y. Yu, and E. Ma, “Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals,” Mater. Chem. Phys. 101, 464-469 (2007).
[CrossRef]

Mccann, M.

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 1-5 (2009).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Muta, K.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B 46, 11445 (1992).
[CrossRef]

Qian, G.

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

Qiu, J.

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989-8994 (2008).
[CrossRef] [PubMed]

G. Lin, B. Zhu, S. Zhou, H. Yang, and J. Qiu, “Tunable luminescence of CaO-Al2O3-GeO2 glasses,” Opt. Express 15, 16980-16985 (2007).
[CrossRef] [PubMed]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189-1207 (2006).
[CrossRef]

Slaoui, A.

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Stallinga, P.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Strümpel, C.

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Švrcek, V.

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Szuromi, P.

P. Szuromi and D. Clery, “Control and use of defects in materials,” Science 281, 939-940 (1998).
[CrossRef]

Tanabe, S.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106, 043101 (2009).
[CrossRef]

Teng, Y.

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

Timmerman, D.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Tobias, I.

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

Ueda, J.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106, 043101 (2009).
[CrossRef]

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119 (2005).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 1-5 (2009).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Wang, Y.

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33, 1884-1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, and E. Ma, “Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals,” Mater. Chem. Phys. 101, 464-469 (2007).
[CrossRef]

Weeks, R. A.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B 46, 11445 (1992).
[CrossRef]

Weng, F.

Würfel, P.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

Xie, L.

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

Yang, G.

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Yang, H.

Yassievich, I. N.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2, 105-109 (2008).
[CrossRef]

Ye, S.

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989-8994 (2008).
[CrossRef] [PubMed]

Yu, Y.

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33, 1884-1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, and E. Ma, “Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals,” Mater. Chem. Phys. 101, 464-469 (2007).
[CrossRef]

Zhang, H.

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

Zhang, Q.

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Zhou, S.

Zhu, B.

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16, 8989-8994 (2008).
[CrossRef] [PubMed]

G. Lin, B. Zhu, S. Zhou, H. Yang, and J. Qiu, “Tunable luminescence of CaO-Al2O3-GeO2 glasses,” Opt. Express 15, 16980-16985 (2007).
[CrossRef] [PubMed]

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 1-5 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

L. Xie, Y. Wang, and H. Zhang, “Near-infrared quantum cutting in YPO4: Yb3+, Tm3+ via cooperative energy transfer,” Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. Chen, G. Lakshminarayana, G. Qian, and J. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett. 93, 181110 (2008).
[CrossRef]

J. Appl. Phys. (3)

S. Ye, B. Zhu, Y. Liu, Y. Teng, G. Lin, G. Lakshminarayana, X. Fan, and J. Qiu, “Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO-TiO2-SiO2 glasses,” J. Appl. Phys. 105, 063508 (2009).
[CrossRef]

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics,” J. Appl. Phys. 106, 043101 (2009).
[CrossRef]

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 1668-1674 (2002).
[CrossRef]

Mater. Chem. Phys. (1)

D. Chen, Y. Wang, Y. Yu, and E. Ma, “Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals,” Mater. Chem. Phys. 101, 464-469 (2007).
[CrossRef]

Nat. Photonics (2)

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2, 105-109 (2008).
[CrossRef]

J. Bisquert, “Photovoltaics: The two sides of solar energy,” Nat. Photonics 2, 648-649 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B 46, 11445 (1992).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Science (1)

P. Szuromi and D. Clery, “Control and use of defects in materials,” Science 281, 939-940 (1998).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90, 1189-1207 (2006).
[CrossRef]

C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. D. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency--an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238-249 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Contour plot of fluorescence intensity for sample A. The dotted lines mark the excitation dependent emission peaks.

Fig. 2
Fig. 2

Left: Excitation spectra of sample H under 980 and 470 monitoring. Middle: Visible emission spectra of sample A, D, and H at 310 nm excitation. Right: NIR emission spectra of sample A, D, and H at 310 nm excitation.

Fig. 3
Fig. 3

Schematic energy level diagram of defect centers and Yb 3 + . Solid, dotted, and short-dotted arrows represent optical transitions, nonradiative energy transfer processes, and nonradiative relaxation, respectively.

Fig. 4
Fig. 4

Luminescence decay curves of 470 nm emission at 310 nm excitation. The inset shows calculated energy transfer efficiency as a function of Yb 3 + concentration.

Fig. 5
Fig. 5

Wavelength-dependent energy transfer efficiency of cooperation downconversion in sample H. The x axis is couples of excitation wavelength and corresponding emission central wavelength determined from Fig. 1.

Tables (1)

Tables Icon

Table 1 Al and Yb 2 O 3 Concentrations in Sr O - Al 2 O 3 - Al - Ge O 2 - Yb 2 O 3 Glasses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ m = t 0 [ I ( t ) I 0 ] d t ,
η E T = 1 τ m x Yb τ m 0 Yb ,

Metrics