Abstract

Optical properties of InxAl1xN are calculated as a function of the concentration of indium and aluminum. Aluminum is partially replaced by indium in an AlN sample, and optical properties of the resulting materials are studied. The fractional concentration of indium is increased gradually from x=0 to x=1 in steps of 0.25. The bandgap decreases with increasing indium concentration, ending up with a narrow gap of 0.9eV for pure InN and a wide gap of 5.4eV for pure AlN. Frequency-dependent reflectivity, absorption coefficient, and optical conductivity of InxAl1x N are calculated and found to be the constituent’s concentration dependent. The maximum value of reflectivity, absorption coefficient, and optical conductivity shifts from higher frequency into the lower frequency region as the material goes from pure AlN to pure InN.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Maqbool, M. E. Kordesch, and A. Kayani, “Enhanced cathodoluminescence from an amorphous AlN:holmium phosphor by co-doped Gd+3 for optical devices applications,” J. Opt. Soc. Am. B 26, 998-1001 (2009).
    [CrossRef]
  2. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
    [CrossRef]
  3. M. Maqbool, M. E. Kordesch, and I. Ahmad, “Electron penetration depth in amorphous AlN by exploiting the luminescence of Ho and Tm ions added to AlN,” Curr. Appl. Phys. 9, 417-421 (2009).
    [CrossRef]
  4. M. Maqbool, I. Ahmad, H. H. Richardson, and M. E. Kordesch, “Direct ultraviolet excitation of an amorphous AlN: praesiodimium phosphor by co-doped Gd3+ cathodoluminescence,” Appl. Phys. Lett. 91, 193511 (2007).
    [CrossRef]
  5. M. Maqbool and Iftikhar Ahmad, “Spectroscopy of gadolinium ion and disadvantages of gadolinium impurity in tissue compensators and collimators, used in radiation treatment planning,” Spectroscopy (Amsterdam) 21, 205-210 (2007).
  6. J. M. Khoshman and M. E. Kordesch, “Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films,” Phys. Status Solidi C 2, 2821-2827 (2005).
    [CrossRef]
  7. E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken, and A. Georgakilas, “Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry,” Appl. Phys. Lett. 92, 191907 (2008).
    [CrossRef]
  8. J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002).
    [CrossRef]
  9. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246-1248 (2002).
    [CrossRef]
  10. T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59, 3241-3244 (1986).
    [CrossRef]
  11. K. Butcher, H. Hirshy, R. Perks, M. Fouquet, and P. Chen, “Stoichiometry effects and the Moss-Burstein effect for InN,” Phys. Status Solidi A 203, 66-74 (2006).
    [CrossRef]
  12. O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B 12, 3060-3083 (1975).
    [CrossRef]
  13. S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).
  14. Z. Dridi, B. Bouhafs, and P. Ruterana, “Strong dependence of the fundamental bandgap on the alloy composition in cubic InxGa1−xN and InxAl1−xN Alloys,” Mater. Res. Soc. Symp. Proc. 798, paper Y5.69, 1-5 (2004).
  15. A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, “Structural properties of magnetic Heusler alloys,” J. Phys.: Condens. Matter 11, 2017-2026 (1999).
    [CrossRef]
  16. K. Schwarz and P. Blaha, “Solid state calculations using WIEN2k,” Comput. Mater. Sci. 28, 259-273 (2003).
    [CrossRef]
  17. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technology, 2001).
  18. G. Rahman, S. Cho, and S. C. Hong, “Half metallic ferromagnetism of Mn doped AlSb: A first principles study,” Phys. Status Solidi B 244, 4435-4438 (2007).
    [CrossRef]
  19. S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, “Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe,” Physica B 403, 3452-3458 (2008).
    [CrossRef]
  20. L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
    [CrossRef]
  21. T. H. Gfroerer, L. P. Priestley, F. E. Weindruch, and M. W. Wanless, “Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates,” Appl. Phys. Lett. 80, 4570-4572 (2002).
    [CrossRef]
  22. M. L. Benkhedir, M. S. Aida, A. Stesmans, and G. J. Adriaenssens, “Experimental studies of the density of states in the band gap of a-Se,” J. Optoelectron. Adv. Mater. 7, 329-332 (2005).
  23. A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002).
    [CrossRef]
  24. H. Hirayama, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett. 80, 1589-1591 (2002).
    [CrossRef]
  25. A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002).
    [CrossRef]
  26. T. Someya and Y. Arakawa, “Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 73, 3653-3655 (1998).
    [CrossRef]
  27. M. K. Emsley and M. S. Unlu, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948-955 (2002).
    [CrossRef]

2009 (2)

M. Maqbool, M. E. Kordesch, and I. Ahmad, “Electron penetration depth in amorphous AlN by exploiting the luminescence of Ho and Tm ions added to AlN,” Curr. Appl. Phys. 9, 417-421 (2009).
[CrossRef]

M. Maqbool, M. E. Kordesch, and A. Kayani, “Enhanced cathodoluminescence from an amorphous AlN:holmium phosphor by co-doped Gd+3 for optical devices applications,” J. Opt. Soc. Am. B 26, 998-1001 (2009).
[CrossRef]

2008 (2)

E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken, and A. Georgakilas, “Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry,” Appl. Phys. Lett. 92, 191907 (2008).
[CrossRef]

S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, “Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe,” Physica B 403, 3452-3458 (2008).
[CrossRef]

2007 (3)

M. Maqbool, I. Ahmad, H. H. Richardson, and M. E. Kordesch, “Direct ultraviolet excitation of an amorphous AlN: praesiodimium phosphor by co-doped Gd3+ cathodoluminescence,” Appl. Phys. Lett. 91, 193511 (2007).
[CrossRef]

M. Maqbool and Iftikhar Ahmad, “Spectroscopy of gadolinium ion and disadvantages of gadolinium impurity in tissue compensators and collimators, used in radiation treatment planning,” Spectroscopy (Amsterdam) 21, 205-210 (2007).

G. Rahman, S. Cho, and S. C. Hong, “Half metallic ferromagnetism of Mn doped AlSb: A first principles study,” Phys. Status Solidi B 244, 4435-4438 (2007).
[CrossRef]

2006 (2)

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

K. Butcher, H. Hirshy, R. Perks, M. Fouquet, and P. Chen, “Stoichiometry effects and the Moss-Burstein effect for InN,” Phys. Status Solidi A 203, 66-74 (2006).
[CrossRef]

2005 (2)

J. M. Khoshman and M. E. Kordesch, “Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films,” Phys. Status Solidi C 2, 2821-2827 (2005).
[CrossRef]

M. L. Benkhedir, M. S. Aida, A. Stesmans, and G. J. Adriaenssens, “Experimental studies of the density of states in the band gap of a-Se,” J. Optoelectron. Adv. Mater. 7, 329-332 (2005).

2004 (1)

Z. Dridi, B. Bouhafs, and P. Ruterana, “Strong dependence of the fundamental bandgap on the alloy composition in cubic InxGa1−xN and InxAl1−xN Alloys,” Mater. Res. Soc. Symp. Proc. 798, paper Y5.69, 1-5 (2004).

2003 (2)

K. Schwarz and P. Blaha, “Solid state calculations using WIEN2k,” Comput. Mater. Sci. 28, 259-273 (2003).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

2002 (7)

J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002).
[CrossRef]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246-1248 (2002).
[CrossRef]

A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002).
[CrossRef]

H. Hirayama, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett. 80, 1589-1591 (2002).
[CrossRef]

A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002).
[CrossRef]

T. H. Gfroerer, L. P. Priestley, F. E. Weindruch, and M. W. Wanless, “Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates,” Appl. Phys. Lett. 80, 4570-4572 (2002).
[CrossRef]

M. K. Emsley and M. S. Unlu, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948-955 (2002).
[CrossRef]

1999 (1)

A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, “Structural properties of magnetic Heusler alloys,” J. Phys.: Condens. Matter 11, 2017-2026 (1999).
[CrossRef]

1998 (2)

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

T. Someya and Y. Arakawa, “Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 73, 3653-3655 (1998).
[CrossRef]

1986 (1)

T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59, 3241-3244 (1986).
[CrossRef]

1975 (1)

O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B 12, 3060-3083 (1975).
[CrossRef]

Abbar, B.

S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, “Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe,” Physica B 403, 3452-3458 (2008).
[CrossRef]

Adikimenakis, A.

E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken, and A. Georgakilas, “Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry,” Appl. Phys. Lett. 92, 191907 (2008).
[CrossRef]

Adriaenssens, G. J.

M. L. Benkhedir, M. S. Aida, A. Stesmans, and G. J. Adriaenssens, “Experimental studies of the density of states in the band gap of a-Se,” J. Optoelectron. Adv. Mater. 7, 329-332 (2005).

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

Ahmad, I.

M. Maqbool, M. E. Kordesch, and I. Ahmad, “Electron penetration depth in amorphous AlN by exploiting the luminescence of Ho and Tm ions added to AlN,” Curr. Appl. Phys. 9, 417-421 (2009).
[CrossRef]

M. Maqbool, I. Ahmad, H. H. Richardson, and M. E. Kordesch, “Direct ultraviolet excitation of an amorphous AlN: praesiodimium phosphor by co-doped Gd3+ cathodoluminescence,” Appl. Phys. Lett. 91, 193511 (2007).
[CrossRef]

Ahmad, Iftikhar

M. Maqbool and Iftikhar Ahmad, “Spectroscopy of gadolinium ion and disadvantages of gadolinium impurity in tissue compensators and collimators, used in radiation treatment planning,” Spectroscopy (Amsterdam) 21, 205-210 (2007).

Aida, M. S.

M. L. Benkhedir, M. S. Aida, A. Stesmans, and G. J. Adriaenssens, “Experimental studies of the density of states in the band gap of a-Se,” J. Optoelectron. Adv. Mater. 7, 329-332 (2005).

Amabile, D.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Andersen, O. K.

O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B 12, 3060-3083 (1975).
[CrossRef]

Aoyagi, Y.

H. Hirayama, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett. 80, 1589-1591 (2002).
[CrossRef]

Arakawa, Y.

T. Someya and Y. Arakawa, “Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 73, 3653-3655 (1998).
[CrossRef]

Artús, L.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Ayuela, A.

A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, “Structural properties of magnetic Heusler alloys,” J. Phys.: Condens. Matter 11, 2017-2026 (1999).
[CrossRef]

Benguerine, K.

S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, “Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe,” Physica B 403, 3452-3458 (2008).
[CrossRef]

Benkhedir, M. L.

M. L. Benkhedir, M. S. Aida, A. Stesmans, and G. J. Adriaenssens, “Experimental studies of the density of states in the band gap of a-Se,” J. Optoelectron. Adv. Mater. 7, 329-332 (2005).

Benosman, N.

S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, “Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe,” Physica B 403, 3452-3458 (2008).
[CrossRef]

Bhattacharyya, A.

A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002).
[CrossRef]

Blaha, P.

K. Schwarz and P. Blaha, “Solid state calculations using WIEN2k,” Comput. Mater. Sci. 28, 259-273 (2003).
[CrossRef]

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technology, 2001).

Bouhafs, B.

S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, “Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe,” Physica B 403, 3452-3458 (2008).
[CrossRef]

Z. Dridi, B. Bouhafs, and P. Ruterana, “Strong dependence of the fundamental bandgap on the alloy composition in cubic InxGa1−xN and InxAl1−xN Alloys,” Mater. Res. Soc. Symp. Proc. 798, paper Y5.69, 1-5 (2004).

Butcher, K.

K. Butcher, H. Hirshy, R. Perks, M. Fouquet, and P. Chen, “Stoichiometry effects and the Moss-Burstein effect for InN,” Phys. Status Solidi A 203, 66-74 (2006).
[CrossRef]

Cabalu, J.

A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002).
[CrossRef]

Chen, P.

K. Butcher, H. Hirshy, R. Perks, M. Fouquet, and P. Chen, “Stoichiometry effects and the Moss-Burstein effect for InN,” Phys. Status Solidi A 203, 66-74 (2006).
[CrossRef]

Cho, S.

G. Rahman, S. Cho, and S. C. Hong, “Half metallic ferromagnetism of Mn doped AlSb: A first principles study,” Phys. Status Solidi B 244, 4435-4438 (2007).
[CrossRef]

Cuscó, R.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Downes, J.

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

Dridi, Z.

Z. Dridi, B. Bouhafs, and P. Ruterana, “Strong dependence of the fundamental bandgap on the alloy composition in cubic InxGa1−xN and InxAl1−xN Alloys,” Mater. Res. Soc. Symp. Proc. 798, paper Y5.69, 1-5 (2004).

Duda, L. C.

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

Emsley, M. K.

M. K. Emsley and M. S. Unlu, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948-955 (2002).
[CrossRef]

Enkovaara, J.

A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, “Structural properties of magnetic Heusler alloys,” J. Phys.: Condens. Matter 11, 2017-2026 (1999).
[CrossRef]

Foley, C. P.

T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59, 3241-3244 (1986).
[CrossRef]

Fouquet, M.

K. Butcher, H. Hirshy, R. Perks, M. Fouquet, and P. Chen, “Stoichiometry effects and the Moss-Burstein effect for InN,” Phys. Status Solidi A 203, 66-74 (2006).
[CrossRef]

Friel, I.

A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002).
[CrossRef]

Fujiwara, Y.

A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002).
[CrossRef]

Georgakilas, A.

E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken, and A. Georgakilas, “Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry,” Appl. Phys. Lett. 92, 191907 (2008).
[CrossRef]

Gfroerer, T. H.

T. H. Gfroerer, L. P. Priestley, F. E. Weindruch, and M. W. Wanless, “Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates,” Appl. Phys. Lett. 80, 4570-4572 (2002).
[CrossRef]

Giesen, C.

E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken, and A. Georgakilas, “Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry,” Appl. Phys. Lett. 92, 191907 (2008).
[CrossRef]

Guo, J.

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002).
[CrossRef]

Harima, H.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246-1248 (2002).
[CrossRef]

Hernández, S.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Heuken, M.

E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken, and A. Georgakilas, “Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry,” Appl. Phys. Lett. 92, 191907 (2008).
[CrossRef]

Hirata, A.

H. Hirayama, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett. 80, 1589-1591 (2002).
[CrossRef]

Hirayama, H.

H. Hirayama, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett. 80, 1589-1591 (2002).
[CrossRef]

Hirshy, H.

K. Butcher, H. Hirshy, R. Perks, M. Fouquet, and P. Chen, “Stoichiometry effects and the Moss-Burstein effect for InN,” Phys. Status Solidi A 203, 66-74 (2006).
[CrossRef]

Hong, S. C.

G. Rahman, S. Cho, and S. C. Hong, “Half metallic ferromagnetism of Mn doped AlSb: A first principles study,” Phys. Status Solidi B 244, 4435-4438 (2007).
[CrossRef]

Iliopoulos, E.

E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken, and A. Georgakilas, “Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry,” Appl. Phys. Lett. 92, 191907 (2008).
[CrossRef]

A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002).
[CrossRef]

Kayani, A.

Khoshman, J. M.

J. M. Khoshman and M. E. Kordesch, “Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films,” Phys. Status Solidi C 2, 2821-2827 (2005).
[CrossRef]

Kinoshita, A.

H. Hirayama, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett. 80, 1589-1591 (2002).
[CrossRef]

Koizumi, A.

A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002).
[CrossRef]

Korakakis, D.

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

Kordesch, M. E.

M. Maqbool, M. E. Kordesch, and A. Kayani, “Enhanced cathodoluminescence from an amorphous AlN:holmium phosphor by co-doped Gd+3 for optical devices applications,” J. Opt. Soc. Am. B 26, 998-1001 (2009).
[CrossRef]

M. Maqbool, M. E. Kordesch, and I. Ahmad, “Electron penetration depth in amorphous AlN by exploiting the luminescence of Ho and Tm ions added to AlN,” Curr. Appl. Phys. 9, 417-421 (2009).
[CrossRef]

M. Maqbool, I. Ahmad, H. H. Richardson, and M. E. Kordesch, “Direct ultraviolet excitation of an amorphous AlN: praesiodimium phosphor by co-doped Gd3+ cathodoluminescence,” Appl. Phys. Lett. 91, 193511 (2007).
[CrossRef]

J. M. Khoshman and M. E. Kordesch, “Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films,” Phys. Status Solidi C 2, 2821-2827 (2005).
[CrossRef]

Kurimoto, E.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246-1248 (2002).
[CrossRef]

Kvanicka, D.

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technology, 2001).

Li, S. X.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002).
[CrossRef]

Luitz, J.

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technology, 2001).

Lyer, S.

A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002).
[CrossRef]

Madsen, G. K. H.

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technology, 2001).

Maqbool, M.

M. Maqbool, M. E. Kordesch, and I. Ahmad, “Electron penetration depth in amorphous AlN by exploiting the luminescence of Ho and Tm ions added to AlN,” Curr. Appl. Phys. 9, 417-421 (2009).
[CrossRef]

M. Maqbool, M. E. Kordesch, and A. Kayani, “Enhanced cathodoluminescence from an amorphous AlN:holmium phosphor by co-doped Gd+3 for optical devices applications,” J. Opt. Soc. Am. B 26, 998-1001 (2009).
[CrossRef]

M. Maqbool, I. Ahmad, H. H. Richardson, and M. E. Kordesch, “Direct ultraviolet excitation of an amorphous AlN: praesiodimium phosphor by co-doped Gd3+ cathodoluminescence,” Appl. Phys. Lett. 91, 193511 (2007).
[CrossRef]

M. Maqbool and Iftikhar Ahmad, “Spectroscopy of gadolinium ion and disadvantages of gadolinium impurity in tissue compensators and collimators, used in radiation treatment planning,” Spectroscopy (Amsterdam) 21, 205-210 (2007).

Martin, R. W.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Matsuoka, T.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246-1248 (2002).
[CrossRef]

Mecabih, S.

S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, “Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe,” Physica B 403, 3452-3458 (2008).
[CrossRef]

Moriya, H.

A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002).
[CrossRef]

Moustakus, T. D.

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

Nakao, M.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246-1248 (2002).
[CrossRef]

Nanishi, Y.

J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002).
[CrossRef]

Nieminen, R. M.

A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, “Structural properties of magnetic Heusler alloys,” J. Phys.: Condens. Matter 11, 2017-2026 (1999).
[CrossRef]

Nogales, E.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Nonogaki, Y.

A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002).
[CrossRef]

Nordgren, J.

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

O'Donnell, K. P.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Okamoto, H.

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246-1248 (2002).
[CrossRef]

Pastor, D.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Perks, R.

K. Butcher, H. Hirshy, R. Perks, M. Fouquet, and P. Chen, “Stoichiometry effects and the Moss-Burstein effect for InN,” Phys. Status Solidi A 203, 66-74 (2006).
[CrossRef]

Priestley, L. P.

T. H. Gfroerer, L. P. Priestley, F. E. Weindruch, and M. W. Wanless, “Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates,” Appl. Phys. Lett. 80, 4570-4572 (2002).
[CrossRef]

Rahman, G.

G. Rahman, S. Cho, and S. C. Hong, “Half metallic ferromagnetism of Mn doped AlSb: A first principles study,” Phys. Status Solidi B 244, 4435-4438 (2007).
[CrossRef]

Richardson, H. H.

M. Maqbool, I. Ahmad, H. H. Richardson, and M. E. Kordesch, “Direct ultraviolet excitation of an amorphous AlN: praesiodimium phosphor by co-doped Gd3+ cathodoluminescence,” Appl. Phys. Lett. 91, 193511 (2007).
[CrossRef]

Ruterana, P.

Z. Dridi, B. Bouhafs, and P. Ruterana, “Strong dependence of the fundamental bandgap on the alloy composition in cubic InxGa1−xN and InxAl1−xN Alloys,” Mater. Res. Soc. Symp. Proc. 798, paper Y5.69, 1-5 (2004).

Saito, Y.

J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002).
[CrossRef]

Sampath, A. V.

A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002).
[CrossRef]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002).
[CrossRef]

Schwarz, K.

K. Schwarz and P. Blaha, “Solid state calculations using WIEN2k,” Comput. Mater. Sci. 28, 259-273 (2003).
[CrossRef]

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technology, 2001).

Smith, K. E.

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

Someya, T.

T. Someya and Y. Arakawa, “Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 73, 3653-3655 (1998).
[CrossRef]

Stagarescu, C. B.

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

Stesmans, A.

M. L. Benkhedir, M. S. Aida, A. Stesmans, and G. J. Adriaenssens, “Experimental studies of the density of states in the band gap of a-Se,” J. Optoelectron. Adv. Mater. 7, 329-332 (2005).

Takeda, Y.

A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002).
[CrossRef]

Tansley, T. L.

T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59, 3241-3244 (1986).
[CrossRef]

Ullakko, K.

A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, “Structural properties of magnetic Heusler alloys,” J. Phys.: Condens. Matter 11, 2017-2026 (1999).
[CrossRef]

Unlu, M. S.

M. K. Emsley and M. S. Unlu, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948-955 (2002).
[CrossRef]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

Wang, K.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Wanless, M. W.

T. H. Gfroerer, L. P. Priestley, F. E. Weindruch, and M. W. Wanless, “Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates,” Appl. Phys. Lett. 80, 4570-4572 (2002).
[CrossRef]

Watanabe, N.

A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002).
[CrossRef]

Watson, I. M.

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Weindruch, F. E.

T. H. Gfroerer, L. P. Priestley, F. E. Weindruch, and M. W. Wanless, “Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates,” Appl. Phys. Lett. 80, 4570-4572 (2002).
[CrossRef]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002).
[CrossRef]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

Appl. Phys. Lett. (8)

M. Maqbool, I. Ahmad, H. H. Richardson, and M. E. Kordesch, “Direct ultraviolet excitation of an amorphous AlN: praesiodimium phosphor by co-doped Gd3+ cathodoluminescence,” Appl. Phys. Lett. 91, 193511 (2007).
[CrossRef]

E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken, and A. Georgakilas, “Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry,” Appl. Phys. Lett. 92, 191907 (2008).
[CrossRef]

J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80, 3967-3969 (2002).
[CrossRef]

T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246-1248 (2002).
[CrossRef]

T. H. Gfroerer, L. P. Priestley, F. E. Weindruch, and M. W. Wanless, “Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates,” Appl. Phys. Lett. 80, 4570-4572 (2002).
[CrossRef]

A. Koizumi, H. Moriya, N. Watanabe, Y. Nonogaki, Y. Fujiwara, and Y. Takeda, “Er-related luminescence in Er, O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1559-1561 (2002).
[CrossRef]

H. Hirayama, A. Kinoshita, A. Hirata, and Y. Aoyagi, “Room-temperature intense 320 nm ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells,” Appl. Phys. Lett. 80, 1589-1591 (2002).
[CrossRef]

T. Someya and Y. Arakawa, “Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 73, 3653-3655 (1998).
[CrossRef]

Comput. Mater. Sci. (1)

K. Schwarz and P. Blaha, “Solid state calculations using WIEN2k,” Comput. Mater. Sci. 28, 259-273 (2003).
[CrossRef]

Curr. Appl. Phys. (1)

M. Maqbool, M. E. Kordesch, and I. Ahmad, “Electron penetration depth in amorphous AlN by exploiting the luminescence of Ho and Tm ions added to AlN,” Curr. Appl. Phys. 9, 417-421 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Emsley and M. S. Unlu, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 8, 948-955 (2002).
[CrossRef]

J. Appl. Phys. (1)

T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” J. Appl. Phys. 59, 3241-3244 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

M. L. Benkhedir, M. S. Aida, A. Stesmans, and G. J. Adriaenssens, “Experimental studies of the density of states in the band gap of a-Se,” J. Optoelectron. Adv. Mater. 7, 329-332 (2005).

J. Phys.: Condens. Matter (1)

A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, “Structural properties of magnetic Heusler alloys,” J. Phys.: Condens. Matter 11, 2017-2026 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and I. Friel, “High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors,” J. Vac. Sci. Technol. B 20, 1229-1233 (2002).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (2)

S. Hernández, K. Wang, D. Amabile, E. Nogales, D. Pastor, R. Cuscó, L. Artús, R. W. Martin, K. P. O'Donnell, and I. M. Watson, “Structural and optical properties of MOCVD InAlN epilayers,” Mater. Res. Soc. Symp. Proc. 892, 557-562 (2006).

Z. Dridi, B. Bouhafs, and P. Ruterana, “Strong dependence of the fundamental bandgap on the alloy composition in cubic InxGa1−xN and InxAl1−xN Alloys,” Mater. Res. Soc. Symp. Proc. 798, paper Y5.69, 1-5 (2004).

Phys. Rev. B (2)

O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B 12, 3060-3083 (1975).
[CrossRef]

L. C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakus, J. Guo, and J. Nordgren, “Density of states, hybridization, and bandgap evolution in AlxGa1−xN alloys,” Phys. Rev. B 58, 1928-1933 (1998).
[CrossRef]

Phys. Status Solidi A (1)

K. Butcher, H. Hirshy, R. Perks, M. Fouquet, and P. Chen, “Stoichiometry effects and the Moss-Burstein effect for InN,” Phys. Status Solidi A 203, 66-74 (2006).
[CrossRef]

Phys. Status Solidi B (1)

G. Rahman, S. Cho, and S. C. Hong, “Half metallic ferromagnetism of Mn doped AlSb: A first principles study,” Phys. Status Solidi B 244, 4435-4438 (2007).
[CrossRef]

Phys. Status Solidi C (1)

J. M. Khoshman and M. E. Kordesch, “Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films,” Phys. Status Solidi C 2, 2821-2827 (2005).
[CrossRef]

Physica B (1)

S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, and B. Bouhafs, “Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe,” Physica B 403, 3452-3458 (2008).
[CrossRef]

Solid State Commun. (1)

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411-414 (2003).
[CrossRef]

Spectroscopy (Amsterdam) (1)

M. Maqbool and Iftikhar Ahmad, “Spectroscopy of gadolinium ion and disadvantages of gadolinium impurity in tissue compensators and collimators, used in radiation treatment planning,” Spectroscopy (Amsterdam) 21, 205-210 (2007).

Other (1)

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technology, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Variation of bandgap as a function of In concentration in In x Al 1 x N .

Fig. 2
Fig. 2

Frequency-dependent reflectivity r ( ω ) for In x Al 1 x N .

Fig. 3
Fig. 3

Frequency-dependent absorption coefficient, α ( ω ) for In x Al 1 x N .

Fig. 4
Fig. 4

Frequency-dependent optical conductivity for In x Al 1 x N .

Metrics