Abstract

A cross-waveguide resonator structure is proposed for silicon electro-optic modulators operating around the near-infrared (NIR) communication wavelength of 1550nm. The device is modeled based on a silicon-on-insulator wafer with a compact surface area of 16μm2 (4μm×4μm) and the modulation is achieved by resonance peak shift caused by carrier injection-based refractive index perturbation. It is shown via numerical study that the modulation speed of the device hits 2.9GHz and 3dB frequency around 4GHz, while the DC power consumption is only 17.3mW. An optimum modulation depth of 5.7dB was found after tuning the optical confinement of the cavity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
    [CrossRef]
  2. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
    [CrossRef]
  3. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15, 3140-3148 (2007).
    [CrossRef] [PubMed]
  4. N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, “Integrated all-optical switch in a cross-waveguide geometry,” Appl. Phys. Lett. 88, 171104 (2006).
    [CrossRef]
  5. M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12, 1520-1526 (2006).
    [CrossRef]
  6. M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Resonator-based silicon electro-optic modulator with low power consumption,” Jpn. J. Appl. Phys., Part 1 48, 04C104 (2009).
    [CrossRef]
  7. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]
  8. R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  9. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
    [CrossRef]
  10. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  11. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton Univ. Press, 2008), p. 247.
  12. RSoft fullwave 5.0 user guide 90, RSoft Design Group, Inc.
  13. C. E. Png, S. P. Chan, S. T. Lim, and G. T. Reed, “Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI),” J. Lightwave Technol. 22, 1573-1582 (2004).
    [CrossRef]
  14. C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high-confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96, 6008-6015 (2004).
    [CrossRef]
  15. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A submicron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13, 8845-8854 (2005).
    [CrossRef] [PubMed]
  16. J. H. Welburn, A. Petrov, and M. Eich, “Electro-optical modulator in a polymer infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express 17, 304-313 (2009).
    [CrossRef]
  17. C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
    [CrossRef]
  18. C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
    [CrossRef]

2009 (4)

M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Resonator-based silicon electro-optic modulator with low power consumption,” Jpn. J. Appl. Phys., Part 1 48, 04C104 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

J. H. Welburn, A. Petrov, and M. Eich, “Electro-optical modulator in a polymer infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express 17, 304-313 (2009).
[CrossRef]

C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

2008 (1)

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[CrossRef]

2007 (3)

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15, 3140-3148 (2007).
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

2006 (2)

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, “Integrated all-optical switch in a cross-waveguide geometry,” Appl. Phys. Lett. 88, 171104 (2006).
[CrossRef]

M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12, 1520-1526 (2006).
[CrossRef]

2005 (2)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A submicron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13, 8845-8854 (2005).
[CrossRef] [PubMed]

2004 (2)

C. E. Png, S. P. Chan, S. T. Lim, and G. T. Reed, “Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI),” J. Lightwave Technol. 22, 1573-1582 (2004).
[CrossRef]

C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high-confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Barrios, C. A.

C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high-confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Bona, G.-L.

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, “Integrated all-optical switch in a cross-waveguide geometry,” Appl. Phys. Lett. 88, 171104 (2006).
[CrossRef]

Chan, S. P.

Chen, R. T.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Chen, X.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Combrié, S.

C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Danner, A. J.

M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Resonator-based silicon electro-optic modulator with low power consumption,” Jpn. J. Appl. Phys., Part 1 48, 04C104 (2009).
[CrossRef]

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[CrossRef]

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Eich, M.

Emerson, N. G.

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Gardes, F. Y.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Gu, L.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Harbers, R.

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, “Integrated all-optical switch in a cross-waveguide geometry,” Appl. Phys. Lett. 88, 171104 (2006).
[CrossRef]

Husko, C.

C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Jiang, W.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton Univ. Press, 2008), p. 247.

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton Univ. Press, 2008), p. 247.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Li, E. P.

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[CrossRef]

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Lim, S. T.

M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Resonator-based silicon electro-optic modulator with low power consumption,” Jpn. J. Appl. Phys., Part 1 48, 04C104 (2009).
[CrossRef]

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[CrossRef]

C. E. Png, S. P. Chan, S. T. Lim, and G. T. Reed, “Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI),” J. Lightwave Technol. 22, 1573-1582 (2004).
[CrossRef]

Lipson, M.

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15, 3140-3148 (2007).
[CrossRef] [PubMed]

M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12, 1520-1526 (2006).
[CrossRef]

C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high-confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Mahrt, R. F.

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, “Integrated all-optical switch in a cross-waveguide geometry,” Appl. Phys. Lett. 88, 171104 (2006).
[CrossRef]

Manipatruni, S.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton Univ. Press, 2008), p. 247.

Moll, N.

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, “Integrated all-optical switch in a cross-waveguide geometry,” Appl. Phys. Lett. 88, 171104 (2006).
[CrossRef]

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Ogawa, K.

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[CrossRef]

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Park, G. H.

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[CrossRef]

Petrov, A.

Png, C. E.

M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Resonator-based silicon electro-optic modulator with low power consumption,” Jpn. J. Appl. Phys., Part 1 48, 04C104 (2009).
[CrossRef]

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[CrossRef]

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A submicron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13, 8845-8854 (2005).
[CrossRef] [PubMed]

C. E. Png, S. P. Chan, S. T. Lim, and G. T. Reed, “Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI),” J. Lightwave Technol. 22, 1573-1582 (2004).
[CrossRef]

Raineri, F.

C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Reed, G. T.

Rossi, A. D.

C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

Schmidt, B.

Shakya, J.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Tan, Y. T.

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Tran, Q. V.

C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Welburn, J. H.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton Univ. Press, 2008), p. 247.

Wong, C. W.

C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Xin, M.

M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Resonator-based silicon electro-optic modulator with low power consumption,” Jpn. J. Appl. Phys., Part 1 48, 04C104 (2009).
[CrossRef]

Xu, Q.

Appl. Phys. Lett. (5)

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007).
[CrossRef]

N. Moll, R. Harbers, R. F. Mahrt, and G.-L. Bona, “Integrated all-optical switch in a cross-waveguide geometry,” Appl. Phys. Lett. 88, 171104 (2006).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, and Y. T. Tan, “Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption,” Appl. Phys. Lett. 93, 061111 (2008).
[CrossRef]

C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[CrossRef]

Electron. Lett. (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196-1197 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12, 1520-1526 (2006).
[CrossRef]

J. Appl. Phys. (1)

C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high-confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96, 6008-6015 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys., Part 1 (1)

M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Resonator-based silicon electro-optic modulator with low power consumption,” Jpn. J. Appl. Phys., Part 1 48, 04C104 (2009).
[CrossRef]

Nature (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143-145 (1997).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (1)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton Univ. Press, 2008), p. 247.

RSoft fullwave 5.0 user guide 90, RSoft Design Group, Inc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) 3D schematic of the cross-waveguide resonator based modulator; (b) top view of the device with notations of the optimum device dimensions.

Fig. 2
Fig. 2

Resonance peak optimization: (a) tuning lattice constant a to move midgap wavelength to 1550 nm ; (b) tuning defect length l to position resonance peak toward the middle of bandgap.

Fig. 3
Fig. 3

Color coded E x field intensity profile of the cavity mode with resonance wavelength of 1526 nm . The cavity mode penetrates partially into the side branches.

Fig. 4
Fig. 4

Electrical and optical response of the device to different doping concentrations. (a) I–V characteristics of the p-i-n diode shows a lower bias voltage is needed to achieve the same RI change for higher doping concentrations; (b) a blueshift and amplitude decrease of the resonance peak are detected with the increase of the doping concentration.

Fig. 5
Fig. 5

Dc and transient characteristics of the device performance. (a) Relationship between modulation depth, peak shift, and power consumption; (b) refractive index changes with time in response to a rectangular voltage pulse with different amplitudes, and 2.9 GHz modulation speed is indicated at the bias voltage 1.65 V .

Fig. 6
Fig. 6

Tuning optical confinement of the cross-waveguide cavity; both Q and V mode change with r c in an inverted U-shaped relationship.

Tables (1)

Tables Icon

Table 1 Cavity Optical Confinement and Response at Different r c Under the Voltage Bias of 1.65 V

Metrics