Abstract

We present the application of spectral emission imaging microscopy as a method to quantitatively map photonic properties from below the surface of strongly interacting photonic three-dimensional (3D) crystals. We excite emission from emitters deep inside a photonic crystal and record the local emission spectra with micrometer lateral resolution. The recorded directional emission spectra are modified by Bragg diffraction, which we use to determine the local stop-band attenuation, center frequency, and width. Assembling the values obtained into spatial maps yields detailed access to the distributions of the local photonic properties below the crystal surface. We demonstrate this approach by analyzing the emission from the fluorescent protein DsRed2 infiltrated inside self-organized 3D titanium dioxide inverse opals.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
    [CrossRef] [PubMed]
  3. K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  5. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
    [CrossRef] [PubMed]
  6. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359-367 (2008).
    [CrossRef]
  7. I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals,” Phys. Rev. A 71, 053813 (2005).
    [CrossRef]
  8. A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
    [CrossRef]
  9. M. Barth, R. Schuster, A. Gruber, and F. Cichos, “Imaging single quantum dots in three-dimensional photonic crystals,” Phys. Rev. Lett. 96, 243902 (2006).
    [CrossRef] [PubMed]
  10. J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802-804 (1998).
    [CrossRef]
  11. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289-293 (2001).
    [CrossRef] [PubMed]
  12. P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665-2678 (2006).
    [CrossRef]
  13. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
    [CrossRef] [PubMed]
  14. A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005).
    [CrossRef]
  15. J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486-4499 (2001).
    [CrossRef]
  16. F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Simplified sedimentation process for 3D photonic thick layers/bulk crystals with a stop-band in the visible range,” Appl. Surf. Sci. 217, 281-288 (2003).
    [CrossRef]
  17. E. Fluck, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).
    [CrossRef]
  18. Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627-1629 (2000).
    [CrossRef]
  19. J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E 66, 036616 (2002).
    [CrossRef]
  20. G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
    [CrossRef]
  21. M. Doosje, B. J. Hoenders, and J. Knoester, “Scattering of light on the surfaces of photonic crystals,” Opt. Commun. 206, 253-258 (2002).
    [CrossRef]
  22. G. Jung, J. Wiehler, and A. Zumbusch, “The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222,” Biophys. J. 88, 1932-1947 (2005).
    [CrossRef]
  23. Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11, 2525-2531 (2009).
    [CrossRef] [PubMed]
  24. C. Blum and V. Subramaniam, “Single-molecule spectroscopy of fluorescent proteins,” Anal. Bioanal. Chem. 393, 527-541 (2009).
    [CrossRef]
  25. S. J. Remington, “Fluorescent proteins: maturation, photochemistry and photophysics,” Curr. Opin. Struct. Biol. 16, 714-721 (2006).
    [CrossRef] [PubMed]
  26. C. Blum, A. J. Meixner, and V. Subramaniam, “Spectral versatility of single reef coral fluorescent proteins detected by spectrally-resolved single molecule spectroscopy,” ChemPhysChem 9, 310-315 (2008).
    [CrossRef] [PubMed]
  27. C. Blum, A. P. Mosk, I. S. Nikolaev, V. Subramaniam, and W. L. Vos, “Color control of natural fluorescent proteins by photonic crystals,” Small 4, 492-496 (2008).
    [CrossRef] [PubMed]
  28. Q. S. Hanley, P. I. Murray, and T. S. Forde, “Microspectroscopic fluorescence analysis with prism-based imaging spectrometers: review and current studies,” Cytometry A 69A, 759-766 (2006).
    [CrossRef]
  29. G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
    [CrossRef] [PubMed]
  30. C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6, S35-S43 (2009).
    [CrossRef]
  31. C. Blum, A. J. Meixner, and V. Subramaniam, “Single oligomer spectra probe chromophore nanoenvironments of tetrameric fluorescent proteins,” J. Am. Chem. Soc. 128, 8664-8670 (2006).
    [CrossRef] [PubMed]
  32. F. Yang, L. Moss, and G. Phillips, “The molecular structure of green fluorescent protein,” Nat. Biotechnol. 14, 1246-1251 (1996).
    [CrossRef] [PubMed]
  33. P. V. Kamat, “Photochemistry on nonreactive and reactive (semiconductor) surfaces,” Chem. Rev. 93, 267-300 (1993).
    [CrossRef]
  34. R. Janes, M. Edge, J. Robinson, N. S. Allen, and F. Thompson, “Microwave photodielectric and photoconductivity studies of commercial titanium dioxide pigments: the influence of transition metal dopants,” J. Mater. Sci. 33, 3031-3036 (1998).
    [CrossRef]
  35. H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2000).
    [CrossRef]
  36. W. L. Vos, R. Sprik, A. Lagendijk, G. H. Wegdam, A. van Blaaderen, and A. Imhof, “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Kluwer, 1996).
  37. L. Bechger and W. L. Vos, “Homogeneity of oxide air-sphere crystals from millimeter to 100 nm length scales: a probe for macroporous photonic crystal formation,” Chem. Mater. 16, 2425-2432 (2004).
    [CrossRef]

2009

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11, 2525-2531 (2009).
[CrossRef] [PubMed]

C. Blum and V. Subramaniam, “Single-molecule spectroscopy of fluorescent proteins,” Anal. Bioanal. Chem. 393, 527-541 (2009).
[CrossRef]

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6, S35-S43 (2009).
[CrossRef]

2008

C. Blum, A. J. Meixner, and V. Subramaniam, “Spectral versatility of single reef coral fluorescent proteins detected by spectrally-resolved single molecule spectroscopy,” ChemPhysChem 9, 310-315 (2008).
[CrossRef] [PubMed]

C. Blum, A. P. Mosk, I. S. Nikolaev, V. Subramaniam, and W. L. Vos, “Color control of natural fluorescent proteins by photonic crystals,” Small 4, 492-496 (2008).
[CrossRef] [PubMed]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359-367 (2008).
[CrossRef]

2006

M. Barth, R. Schuster, A. Gruber, and F. Cichos, “Imaging single quantum dots in three-dimensional photonic crystals,” Phys. Rev. Lett. 96, 243902 (2006).
[CrossRef] [PubMed]

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665-2678 (2006).
[CrossRef]

Q. S. Hanley, P. I. Murray, and T. S. Forde, “Microspectroscopic fluorescence analysis with prism-based imaging spectrometers: review and current studies,” Cytometry A 69A, 759-766 (2006).
[CrossRef]

S. J. Remington, “Fluorescent proteins: maturation, photochemistry and photophysics,” Curr. Opin. Struct. Biol. 16, 714-721 (2006).
[CrossRef] [PubMed]

C. Blum, A. J. Meixner, and V. Subramaniam, “Single oligomer spectra probe chromophore nanoenvironments of tetrameric fluorescent proteins,” J. Am. Chem. Soc. 128, 8664-8670 (2006).
[CrossRef] [PubMed]

2005

G. Jung, J. Wiehler, and A. Zumbusch, “The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222,” Biophys. J. 88, 1932-1947 (2005).
[CrossRef]

G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
[CrossRef]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005).
[CrossRef]

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals,” Phys. Rev. A 71, 053813 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

2004

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

L. Bechger and W. L. Vos, “Homogeneity of oxide air-sphere crystals from millimeter to 100 nm length scales: a probe for macroporous photonic crystal formation,” Chem. Mater. 16, 2425-2432 (2004).
[CrossRef]

2003

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Simplified sedimentation process for 3D photonic thick layers/bulk crystals with a stop-band in the visible range,” Appl. Surf. Sci. 217, 281-288 (2003).
[CrossRef]

E. Fluck, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).
[CrossRef]

2002

J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E 66, 036616 (2002).
[CrossRef]

M. Doosje, B. J. Hoenders, and J. Knoester, “Scattering of light on the surfaces of photonic crystals,” Opt. Commun. 206, 253-258 (2002).
[CrossRef]

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

2001

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486-4499 (2001).
[CrossRef]

2000

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627-1629 (2000).
[CrossRef]

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2000).
[CrossRef]

1998

R. Janes, M. Edge, J. Robinson, N. S. Allen, and F. Thompson, “Microwave photodielectric and photoconductivity studies of commercial titanium dioxide pigments: the influence of transition metal dopants,” J. Mater. Sci. 33, 3031-3036 (1998).
[CrossRef]

A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
[CrossRef]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802-804 (1998).
[CrossRef]

1996

F. Yang, L. Moss, and G. Phillips, “The molecular structure of green fluorescent protein,” Nat. Biotechnol. 14, 1246-1251 (1996).
[CrossRef] [PubMed]

1993

P. V. Kamat, “Photochemistry on nonreactive and reactive (semiconductor) surfaces,” Chem. Rev. 93, 267-300 (1993).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Allen, N. S.

R. Janes, M. Edge, J. Robinson, N. S. Allen, and F. Thompson, “Microwave photodielectric and photoconductivity studies of commercial titanium dioxide pigments: the influence of transition metal dopants,” J. Mater. Sci. 33, 3031-3036 (1998).
[CrossRef]

Atature, M.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Badolato, A.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Barth, M.

M. Barth, R. Schuster, A. Gruber, and F. Cichos, “Imaging single quantum dots in three-dimensional photonic crystals,” Phys. Rev. Lett. 96, 243902 (2006).
[CrossRef] [PubMed]

Bechger, L.

L. Bechger and W. L. Vos, “Homogeneity of oxide air-sphere crystals from millimeter to 100 nm length scales: a probe for macroporous photonic crystal formation,” Chem. Mater. 16, 2425-2432 (2004).
[CrossRef]

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486-4499 (2001).
[CrossRef]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
[CrossRef]

Blum, C.

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11, 2525-2531 (2009).
[CrossRef] [PubMed]

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6, S35-S43 (2009).
[CrossRef]

C. Blum and V. Subramaniam, “Single-molecule spectroscopy of fluorescent proteins,” Anal. Bioanal. Chem. 393, 527-541 (2009).
[CrossRef]

C. Blum, A. J. Meixner, and V. Subramaniam, “Spectral versatility of single reef coral fluorescent proteins detected by spectrally-resolved single molecule spectroscopy,” ChemPhysChem 9, 310-315 (2008).
[CrossRef] [PubMed]

C. Blum, A. P. Mosk, I. S. Nikolaev, V. Subramaniam, and W. L. Vos, “Color control of natural fluorescent proteins by photonic crystals,” Small 4, 492-496 (2008).
[CrossRef] [PubMed]

C. Blum, A. J. Meixner, and V. Subramaniam, “Single oligomer spectra probe chromophore nanoenvironments of tetrameric fluorescent proteins,” J. Am. Chem. Soc. 128, 8664-8670 (2006).
[CrossRef] [PubMed]

Bo, X. Z.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Braun, P. V.

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665-2678 (2006).
[CrossRef]

Bresson, F.

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Simplified sedimentation process for 3D photonic thick layers/bulk crystals with a stop-band in the visible range,” Appl. Surf. Sci. 217, 281-288 (2003).
[CrossRef]

Cesa, Y.

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6, S35-S43 (2009).
[CrossRef]

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11, 2525-2531 (2009).
[CrossRef] [PubMed]

Chen, C. C.

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Simplified sedimentation process for 3D photonic thick layers/bulk crystals with a stop-band in the visible range,” Appl. Surf. Sci. 217, 281-288 (2003).
[CrossRef]

Chen, Y. W.

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Simplified sedimentation process for 3D photonic thick layers/bulk crystals with a stop-band in the visible range,” Appl. Surf. Sci. 217, 281-288 (2003).
[CrossRef]

Chi, G. C.

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Simplified sedimentation process for 3D photonic thick layers/bulk crystals with a stop-band in the visible range,” Appl. Surf. Sci. 217, 281-288 (2003).
[CrossRef]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Cichos, F.

M. Barth, R. Schuster, A. Gruber, and F. Cichos, “Imaging single quantum dots in three-dimensional photonic crystals,” Phys. Rev. Lett. 96, 243902 (2006).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Deutsch, M.

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627-1629 (2000).
[CrossRef]

Doosje, M.

M. Doosje, B. J. Hoenders, and J. Knoester, “Scattering of light on the surfaces of photonic crystals,” Opt. Commun. 206, 253-258 (2002).
[CrossRef]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Edge, M.

R. Janes, M. Edge, J. Robinson, N. S. Allen, and F. Thompson, “Microwave photodielectric and photoconductivity studies of commercial titanium dioxide pigments: the influence of transition metal dopants,” J. Mater. Sci. 33, 3031-3036 (1998).
[CrossRef]

Escalante, M.

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6, S35-S43 (2009).
[CrossRef]

Fluck, E.

E. Fluck, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).
[CrossRef]

Forde, T. S.

Q. S. Hanley, P. I. Murray, and T. S. Forde, “Microspectroscopic fluorescence analysis with prism-based imaging spectrometers: review and current studies,” Cytometry A 69A, 759-766 (2006).
[CrossRef]

Gajiev, G. M.

G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
[CrossRef]

Galisteo Lòpez, J. F.

J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E 66, 036616 (2002).
[CrossRef]

Garcia-Santamaria, F.

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665-2678 (2006).
[CrossRef]

Golubev, V. G.

G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Greve, J.

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

Gruber, A.

M. Barth, R. Schuster, A. Gruber, and F. Cichos, “Imaging single quantum dots in three-dimensional photonic crystals,” Phys. Rev. Lett. 96, 243902 (2006).
[CrossRef] [PubMed]

Hanley, Q. S.

Q. S. Hanley, P. I. Murray, and T. S. Forde, “Microspectroscopic fluorescence analysis with prism-based imaging spectrometers: review and current studies,” Cytometry A 69A, 759-766 (2006).
[CrossRef]

Hennessy, K.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Herrero, J.

A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
[CrossRef]

Hoeijmakers, J. H. J.

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

Hoenders, B. J.

M. Doosje, B. J. Hoenders, and J. Knoester, “Scattering of light on the surfaces of photonic crystals,” Opt. Commun. 206, 253-258 (2002).
[CrossRef]

Hu, E.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Imamoglu, A.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Imhof, A.

W. L. Vos, R. Sprik, A. Lagendijk, G. H. Wegdam, A. van Blaaderen, and A. Imhof, “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Kluwer, 1996).

Irman, A.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Janes, R.

R. Janes, M. Edge, J. Robinson, N. S. Allen, and F. Thompson, “Microwave photodielectric and photoconductivity studies of commercial titanium dioxide pigments: the influence of transition metal dopants,” J. Mater. Sci. 33, 3031-3036 (1998).
[CrossRef]

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Jung, G.

G. Jung, J. Wiehler, and A. Zumbusch, “The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222,” Biophys. J. 88, 1932-1947 (2005).
[CrossRef]

Kamat, P. V.

P. V. Kamat, “Photochemistry on nonreactive and reactive (semiconductor) surfaces,” Chem. Rev. 93, 267-300 (1993).
[CrossRef]

Knoester, J.

M. Doosje, B. J. Hoenders, and J. Knoester, “Scattering of light on the surfaces of photonic crystals,” Opt. Commun. 206, 253-258 (2002).
[CrossRef]

Koenderink, A. F.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005).
[CrossRef]

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2000).
[CrossRef]

Kuipers, L.

E. Fluck, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).
[CrossRef]

Kurdyukov, D. A.

G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
[CrossRef]

Lagendijk, A.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005).
[CrossRef]

W. L. Vos, R. Sprik, A. Lagendijk, G. H. Wegdam, A. van Blaaderen, and A. Imhof, “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Kluwer, 1996).

Lenferink, A. T. M.

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Lodahl, P.

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals,” Phys. Rev. A 71, 053813 (2005).
[CrossRef]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
[CrossRef]

Mayoral, R.

A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
[CrossRef]

Medvedev, A. V.

G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
[CrossRef]

Meixner, A. J.

C. Blum, A. J. Meixner, and V. Subramaniam, “Spectral versatility of single reef coral fluorescent proteins detected by spectrally-resolved single molecule spectroscopy,” ChemPhysChem 9, 310-315 (2008).
[CrossRef] [PubMed]

C. Blum, A. J. Meixner, and V. Subramaniam, “Single oligomer spectra probe chromophore nanoenvironments of tetrameric fluorescent proteins,” J. Am. Chem. Soc. 128, 8664-8670 (2006).
[CrossRef] [PubMed]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
[CrossRef]

Mifsud, A.

A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
[CrossRef]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
[CrossRef]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Mosk, A. P.

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11, 2525-2531 (2009).
[CrossRef] [PubMed]

C. Blum, A. P. Mosk, I. S. Nikolaev, V. Subramaniam, and W. L. Vos, “Color control of natural fluorescent proteins by photonic crystals,” Small 4, 492-496 (2008).
[CrossRef] [PubMed]

Moss, L.

F. Yang, L. Moss, and G. Phillips, “The molecular structure of green fluorescent protein,” Nat. Biotechnol. 14, 1246-1251 (1996).
[CrossRef] [PubMed]

Murray, P. I.

Q. S. Hanley, P. I. Murray, and T. S. Forde, “Microspectroscopic fluorescence analysis with prism-based imaging spectrometers: review and current studies,” Cytometry A 69A, 759-766 (2006).
[CrossRef]

Nikolaev, I. S.

C. Blum, A. P. Mosk, I. S. Nikolaev, V. Subramaniam, and W. L. Vos, “Color control of natural fluorescent proteins by photonic crystals,” Small 4, 492-496 (2008).
[CrossRef] [PubMed]

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals,” Phys. Rev. A 71, 053813 (2005).
[CrossRef]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Norris, D. J.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627-1629 (2000).
[CrossRef]

Otto, C.

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

Overgaag, K.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Petroff, P. M.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Pevtsov, A. B.

G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
[CrossRef]

Phillips, G.

F. Yang, L. Moss, and G. Phillips, “The molecular structure of green fluorescent protein,” Nat. Biotechnol. 14, 1246-1251 (1996).
[CrossRef] [PubMed]

Remington, S. J.

S. J. Remington, “Fluorescent proteins: maturation, photochemistry and photophysics,” Curr. Opin. Struct. Biol. 16, 714-721 (2006).
[CrossRef] [PubMed]

Rinne, S. A.

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665-2678 (2006).
[CrossRef]

Robinson, J.

R. Janes, M. Edge, J. Robinson, N. S. Allen, and F. Thompson, “Microwave photodielectric and photoconductivity studies of commercial titanium dioxide pigments: the influence of transition metal dopants,” J. Mater. Sci. 33, 3031-3036 (1998).
[CrossRef]

Schriemer, H. P.

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2000).
[CrossRef]

Schuster, R.

M. Barth, R. Schuster, A. Gruber, and F. Cichos, “Imaging single quantum dots in three-dimensional photonic crystals,” Phys. Rev. Lett. 96, 243902 (2006).
[CrossRef] [PubMed]

Segers-Nolten, G. M. J.

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

Sel'kin, A. V.

G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
[CrossRef]

Sprik, R.

W. L. Vos, R. Sprik, A. Lagendijk, G. H. Wegdam, A. van Blaaderen, and A. Imhof, “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Kluwer, 1996).

Sturm, J. C.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Subramaniam, V.

C. Blum and V. Subramaniam, “Single-molecule spectroscopy of fluorescent proteins,” Anal. Bioanal. Chem. 393, 527-541 (2009).
[CrossRef]

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6, S35-S43 (2009).
[CrossRef]

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11, 2525-2531 (2009).
[CrossRef] [PubMed]

C. Blum, A. P. Mosk, I. S. Nikolaev, V. Subramaniam, and W. L. Vos, “Color control of natural fluorescent proteins by photonic crystals,” Small 4, 492-496 (2008).
[CrossRef] [PubMed]

C. Blum, A. J. Meixner, and V. Subramaniam, “Spectral versatility of single reef coral fluorescent proteins detected by spectrally-resolved single molecule spectroscopy,” ChemPhysChem 9, 310-315 (2008).
[CrossRef] [PubMed]

C. Blum, A. J. Meixner, and V. Subramaniam, “Single oligomer spectra probe chromophore nanoenvironments of tetrameric fluorescent proteins,” J. Am. Chem. Soc. 128, 8664-8670 (2006).
[CrossRef] [PubMed]

Thompson, F.

R. Janes, M. Edge, J. Robinson, N. S. Allen, and F. Thompson, “Microwave photodielectric and photoconductivity studies of commercial titanium dioxide pigments: the influence of transition metal dopants,” J. Mater. Sci. 33, 3031-3036 (1998).
[CrossRef]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Travnikov, V. V.

G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

van Blaaderen, A.

W. L. Vos, R. Sprik, A. Lagendijk, G. H. Wegdam, A. van Blaaderen, and A. Imhof, “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Kluwer, 1996).

van den Broek, J. M.

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11, 2525-2531 (2009).
[CrossRef] [PubMed]

van Driel, A. F.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

van Driel, H. M.

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2000).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

van Hulst, N. F.

E. Fluck, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).
[CrossRef]

Vanmaekelbergh, D. L.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Vermeulen, W.

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627-1629 (2000).
[CrossRef]

Vos, W. L.

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11, 2525-2531 (2009).
[CrossRef] [PubMed]

C. Blum, A. P. Mosk, I. S. Nikolaev, V. Subramaniam, and W. L. Vos, “Color control of natural fluorescent proteins by photonic crystals,” Small 4, 492-496 (2008).
[CrossRef] [PubMed]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005).
[CrossRef]

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals,” Phys. Rev. A 71, 053813 (2005).
[CrossRef]

L. Bechger and W. L. Vos, “Homogeneity of oxide air-sphere crystals from millimeter to 100 nm length scales: a probe for macroporous photonic crystal formation,” Chem. Mater. 16, 2425-2432 (2004).
[CrossRef]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

E. Fluck, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).
[CrossRef]

J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E 66, 036616 (2002).
[CrossRef]

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486-4499 (2001).
[CrossRef]

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2000).
[CrossRef]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802-804 (1998).
[CrossRef]

W. L. Vos, R. Sprik, A. Lagendijk, G. H. Wegdam, A. van Blaaderen, and A. Imhof, “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Kluwer, 1996).

Wegdam, G. H.

W. L. Vos, R. Sprik, A. Lagendijk, G. H. Wegdam, A. van Blaaderen, and A. Imhof, “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Kluwer, 1996).

Wiehler, J.

G. Jung, J. Wiehler, and A. Zumbusch, “The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222,” Biophys. J. 88, 1932-1947 (2005).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359-367 (2008).
[CrossRef]

Wijgers, N.

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

Wijnhoven, J. E. G. J.

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486-4499 (2001).
[CrossRef]

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802-804 (1998).
[CrossRef]

Wyman, C.

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yang, F.

F. Yang, L. Moss, and G. Phillips, “The molecular structure of green fluorescent protein,” Nat. Biotechnol. 14, 1246-1251 (1996).
[CrossRef] [PubMed]

Zumbusch, A.

G. Jung, J. Wiehler, and A. Zumbusch, “The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222,” Biophys. J. 88, 1932-1947 (2005).
[CrossRef]

Adv. Mater.

P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665-2678 (2006).
[CrossRef]

Anal. Bioanal. Chem.

C. Blum and V. Subramaniam, “Single-molecule spectroscopy of fluorescent proteins,” Anal. Bioanal. Chem. 393, 527-541 (2009).
[CrossRef]

Appl. Phys. Lett.

Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett. 76, 1627-1629 (2000).
[CrossRef]

A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, “CdS photoluminescence inhibition by a photonic structure,” Appl. Phys. Lett. 73, 1781-1783 (1998).
[CrossRef]

Appl. Surf. Sci.

F. Bresson, C. C. Chen, G. C. Chi, and Y. W. Chen, “Simplified sedimentation process for 3D photonic thick layers/bulk crystals with a stop-band in the visible range,” Appl. Surf. Sci. 217, 281-288 (2003).
[CrossRef]

Biophys. J.

G. Jung, J. Wiehler, and A. Zumbusch, “The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222,” Biophys. J. 88, 1932-1947 (2005).
[CrossRef]

Chem. Mater.

J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater. 13, 4486-4499 (2001).
[CrossRef]

L. Bechger and W. L. Vos, “Homogeneity of oxide air-sphere crystals from millimeter to 100 nm length scales: a probe for macroporous photonic crystal formation,” Chem. Mater. 16, 2425-2432 (2004).
[CrossRef]

Chem. Rev.

P. V. Kamat, “Photochemistry on nonreactive and reactive (semiconductor) surfaces,” Chem. Rev. 93, 267-300 (1993).
[CrossRef]

ChemPhysChem

C. Blum, A. J. Meixner, and V. Subramaniam, “Spectral versatility of single reef coral fluorescent proteins detected by spectrally-resolved single molecule spectroscopy,” ChemPhysChem 9, 310-315 (2008).
[CrossRef] [PubMed]

Curr. Opin. Struct. Biol.

S. J. Remington, “Fluorescent proteins: maturation, photochemistry and photophysics,” Curr. Opin. Struct. Biol. 16, 714-721 (2006).
[CrossRef] [PubMed]

Cytometry A

Q. S. Hanley, P. I. Murray, and T. S. Forde, “Microspectroscopic fluorescence analysis with prism-based imaging spectrometers: review and current studies,” Cytometry A 69A, 759-766 (2006).
[CrossRef]

J. Am. Chem. Soc.

C. Blum, A. J. Meixner, and V. Subramaniam, “Single oligomer spectra probe chromophore nanoenvironments of tetrameric fluorescent proteins,” J. Am. Chem. Soc. 128, 8664-8670 (2006).
[CrossRef] [PubMed]

J. Mater. Sci.

R. Janes, M. Edge, J. Robinson, N. S. Allen, and F. Thompson, “Microwave photodielectric and photoconductivity studies of commercial titanium dioxide pigments: the influence of transition metal dopants,” J. Mater. Sci. 33, 3031-3036 (1998).
[CrossRef]

J. R. Soc. Interface

C. Blum, Y. Cesa, M. Escalante, and V. Subramaniam, “Multimode microscopy: spectral and lifetime imaging,” J. R. Soc. Interface 6, S35-S43 (2009).
[CrossRef]

Nat. Biotechnol.

F. Yang, L. Moss, and G. Phillips, “The molecular structure of green fluorescent protein,” Nat. Biotechnol. 14, 1246-1251 (1996).
[CrossRef] [PubMed]

Nat. Phys.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359-367 (2008).
[CrossRef]

Nature

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289-293 (2001).
[CrossRef] [PubMed]

Nucleic Acids Res.

G. M. J. Segers-Nolten, C. Wyman, N. Wijgers, W. Vermeulen, A. T. M. Lenferink, J. H. J. Hoeijmakers, J. Greve, and C. Otto, “Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes,” Nucleic Acids Res. 30, 4720-4727 (2002).
[CrossRef] [PubMed]

Opt. Commun.

M. Doosje, B. J. Hoenders, and J. Knoester, “Scattering of light on the surfaces of photonic crystals,” Opt. Commun. 206, 253-258 (2002).
[CrossRef]

Phys. Chem. Chem. Phys.

Y. Cesa, C. Blum, J. M. van den Broek, A. P. Mosk, W. L. Vos, and V. Subramaniam, “Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates,” Phys. Chem. Chem. Phys. 11, 2525-2531 (2009).
[CrossRef] [PubMed]

Phys. Rev. A

H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2000).
[CrossRef]

I. S. Nikolaev, P. Lodahl, and W. L. Vos, “Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals,” Phys. Rev. A 71, 053813 (2005).
[CrossRef]

Phys. Rev. B

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005).
[CrossRef]

G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Sel'kin, and V. V. Travnikov, “Bragg reflection spectroscopy of opal-like photonic crystals,” Phys. Rev. B 72, 205115 (2005).
[CrossRef]

Phys. Rev. E

E. Fluck, N. F. van Hulst, W. L. Vos, and L. Kuipers, “Near-field optical investigation of three-dimensional photonic crystals,” Phys. Rev. E 68, 015601 (2003).
[CrossRef]

J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E 66, 036616 (2002).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

M. Barth, R. Schuster, A. Gruber, and F. Cichos, “Imaging single quantum dots in three-dimensional photonic crystals,” Phys. Rev. Lett. 96, 243902 (2006).
[CrossRef] [PubMed]

Science

J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802-804 (1998).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Small

C. Blum, A. P. Mosk, I. S. Nikolaev, V. Subramaniam, and W. L. Vos, “Color control of natural fluorescent proteins by photonic crystals,” Small 4, 492-496 (2008).
[CrossRef] [PubMed]

Other

W. L. Vos, R. Sprik, A. Lagendijk, G. H. Wegdam, A. van Blaaderen, and A. Imhof, “Influence of optical band structures on the diffraction of photonic colloidal crystals,” in Photonic Band Gap Materials, C.M.Soukoulis, ed. (Kluwer, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scanning electron micrograph of a titania inverse opal showing the transition from an area of high (top) to an area of low (bottom) crystal quality. Although areas of high crystal quality clearly dominate, areas with different defects, cracks, and coverage with unpatterned material can be found. This inhomogeneity, and crystal characteristics in the depth of the photonic crystal invisible to scanning electron microscopy, result in differences in the optical properties in the different areas. (b) True color picture of the emission of DsRed2 in a titania inverse opal of lattice parameter a = 440   nm . The attenuation and enhancement of the directional emission by Bragg diffraction on the crystal planes changes the apparent emission color of DsRed2 from orange-yellow to bright green. Large green areas are visible. Differences in the brightness and color hue indicate variations in the local photonic properties within these large photonic domains. Areas showing no clear sign of photonic modification of the emission color are visible in orange-yellow. (c) True color emission picture of DsRed2 in a titania inverse opal reference crystal of a = 270   nm . The emission is orange-yellow and shows no significant lateral variations in color since the reference crystal has no photonic effect on the DsRed2 emission.

Fig. 2
Fig. 2

(a) Emission from reference crystal of a = 270   nm without (anatase emission only, dashed curve) and with infiltrated DsRed2 (gray dotted curve). The emission spectrum of DsRed2 inside a photonic crystal with nominal lattice parameter a = 440   nm (black) shows a clear deviation from the spectrum not influenced by any photonic effect. The emission spectrum was normalized to the red tail of the reference spectrum ( < 14300 cm 1 ) where the chosen crystals do not show any photonic effect. The intensity scale refers to the reference spectrum and confirms that the emission from the protein embedded in the crystal is intense. (b) Intensity ratio spectrum obtained by division of the modified by the reference spectrum. The stop band becomes apparent as a wavelength region of attenuation. On the blue side of the stop band, enhancement of the emission can be observed.

Fig. 3
Fig. 3

(a) Intensity ratio spectra vary depending on the sampled position. Some of the ratio spectra show almost no deviation from the reference spectrum (red spectrum), while others show varying stop-band attenuation correlated with varying enhancement on the blue side of the stop band and stop-band center frequency and width. (b) An area of 50 × 50 μ m was spectrally imaged recording 32 × 32 emission spectra. The intensity ratio spectrum and the attenuation A were determined at each position. The resulting attenuation values were assembled into a map using the same color coding as in (a). The map depicts strong attenuation in the center of the sampled region surrounded by a non-photonic or only weakly photonic region.

Fig. 4
Fig. 4

(a) Map of the stop-band attenuation A shows the central photonic domain (around 28 μ m , 26 μ m ) as well as the edge of a neighboring domain in the top left corner ( 2 μ m , 48 μ m ) . The map shows the same area as shown in Fig. 3b using the same color scale. (b) The map of the stop-band center frequency ω c shows a trend of increasing center frequency from right ( 42 μ m , 30 μ m ) to left ( 5 μ m , 18 μ m ) in the central domain. The neighboring domain clearly shows a decidedly higher center frequency. (c) The stop-band relative width map is calculated from the ratio of the stop-band width Δ ω and center frequency ω c ( Δ ω / ω c ) . The relative width decreases from the right ( 36 μ m , 30 μ m ) to the left ( 7 μ m , 20 μ m ) in the central domain. A threshold of A = 0.25 was used, since a noticeable stop band must be visible to determine its center frequency and width.

Fig. 5
Fig. 5

(a) Stop-band attenuation map depicting the edge of a photonic domain. Attenuation maps report the photonic quality of the crystal area to a depth of the transport mean free path l. (b) Reflection enhancement map of the same area of the crystal. Analyzing the reflection of light from an external source only yields information about the first few layers of the crystal, since the light can only penetrate the Bragg length L B into the crystal. The emission attenuation and the reflection enhancement map show clear differences. The most prominent difference is the area of low attenuation resembling low crystal quality in the depth of the crystal at the position ( 10 μ m , 5 μ m ) . At the same position in the reflection enhancement map very high reflection, resembling high surface quality of the crystal, can be observed. At this position bulk disorder is covered by a layer of very ordered crystal.

Metrics