Abstract

Plasma Bragg density gratings produced by optical-field ionization in underdense gas under the irradiation of two counterpropagating laser pulses at laser intensities around 1013Wcm2 are investigated by particle-in-cell simulation. The grating is composed of interlacing layers of neutral gas and plasma (or partially ionized gas) with its density and period controlled by the initial gas density, laser wavelengths, and intersecting angles of the two laser pulses. The study shows that such gratings have a longer lifetime, about nanoseconds, as compared with those driven by the laser ponderomotive force at higher laser intensities around 1015Wcm2. They may be used for phase-matched high-harmonic generation, laser self-guiding, laser pulse compression and stretching, etc.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 13103 (2005).
    [CrossRef]
  2. H.-C. Wu, Z.-M. Sheng, and J. Zhang, “Chirped pulse compression in nonuniform plasma Bragg gratings,” Appl. Phys. Lett. 87, 201502 (2005).
    [CrossRef]
  3. H. Suk, H. J. Lee, and I. S. Ko, “Generation of high-energy electrons by a femtosecond terawatt laser propagating through a sharp downward density transition,” J. Opt. Soc. Am. B 21, 1391-1396 (2004).
    [CrossRef]
  4. Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
    [CrossRef]
  5. C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
    [CrossRef] [PubMed]
  6. C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
    [CrossRef]
  7. Z.-M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673-680 (2003).
    [CrossRef]
  8. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94, 251104 (2009).
    [CrossRef]
  9. K. R. Chen and J. M. Dawson, “Ion-ripple laser,” Phys. Rev. Lett. 68, 29-32 (1992).
    [CrossRef] [PubMed]
  10. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
    [CrossRef] [PubMed]
  11. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008-2013 (1986).
  12. B. M. Penetrante and J. N. Bardsley, “Residual energy in plasmas produced by intense subpicosecond lasers,” Phys. Rev. A 43, 3100-3113 (1991).
    [CrossRef] [PubMed]
  13. S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8, 858-867 (1991).
    [CrossRef]

2009

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94, 251104 (2009).
[CrossRef]

2007

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[CrossRef] [PubMed]

2005

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 13103 (2005).
[CrossRef]

H.-C. Wu, Z.-M. Sheng, and J. Zhang, “Chirped pulse compression in nonuniform plasma Bragg gratings,” Appl. Phys. Lett. 87, 201502 (2005).
[CrossRef]

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

2004

2003

Z.-M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673-680 (2003).
[CrossRef]

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

1992

K. R. Chen and J. M. Dawson, “Ion-ripple laser,” Phys. Rev. Lett. 68, 29-32 (1992).
[CrossRef] [PubMed]

1991

B. M. Penetrante and J. N. Bardsley, “Residual energy in plasmas produced by intense subpicosecond lasers,” Phys. Rev. A 43, 3100-3113 (1991).
[CrossRef] [PubMed]

S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8, 858-867 (1991).
[CrossRef]

1986

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008-2013 (1986).

Abdollahpour, D.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94, 251104 (2009).
[CrossRef]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008-2013 (1986).

Augst, S.

Backus, S.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Bardsley, J. N.

B. M. Penetrante and J. N. Bardsley, “Residual energy in plasmas produced by intense subpicosecond lasers,” Phys. Rev. A 43, 3100-3113 (1991).
[CrossRef] [PubMed]

Bartels, R. A.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Cang, Y.

H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 13103 (2005).
[CrossRef]

Chen, K. R.

K. R. Chen and J. M. Dawson, “Ion-ripple laser,” Phys. Rev. Lett. 68, 29-32 (1992).
[CrossRef] [PubMed]

Chen, S.-Y.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[CrossRef] [PubMed]

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

Chen, Z. L.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Chin, S. L.

Christov, I. P.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Dawson, J. M.

K. R. Chen and J. M. Dawson, “Ion-ripple laser,” Phys. Rev. Lett. 68, 29-32 (1992).
[CrossRef] [PubMed]

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008-2013 (1986).

Du, K.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Green, H.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Huang, S.-Y.

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

Jin, Z.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Kapteyn, H. C.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Ko, I. S.

Kodama, R.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008-2013 (1986).

Kuo, C.-C.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[CrossRef] [PubMed]

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

Lee, C.-H.

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

Lee, H. J.

Lee, K.-H.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[CrossRef] [PubMed]

Li, Y.-T.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Lin, J.-Y.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[CrossRef] [PubMed]

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

Lin, M.-W.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[CrossRef] [PubMed]

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

Ma, Y.-Y.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Matsuoka, T.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Meyerhofer, D. D.

Murnane, M. M.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Pai, C.-H.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[CrossRef] [PubMed]

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

Papazoglou, D. G.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94, 251104 (2009).
[CrossRef]

Paul, A.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Penetrante, B. M.

B. M. Penetrante and J. N. Bardsley, “Residual energy in plasmas produced by intense subpicosecond lasers,” Phys. Rev. A 43, 3100-3113 (1991).
[CrossRef] [PubMed]

Sheng, Z.-M.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 13103 (2005).
[CrossRef]

H.-C. Wu, Z.-M. Sheng, and J. Zhang, “Chirped pulse compression in nonuniform plasma Bragg gratings,” Appl. Phys. Lett. 87, 201502 (2005).
[CrossRef]

Z.-M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673-680 (2003).
[CrossRef]

Strickland, D.

Suk, H.

Suntsov, S.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94, 251104 (2009).
[CrossRef]

Tampo, M.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Tanaka, K. A.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Tang, Y.-J.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Tobey, R.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Tsutsumi, T.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Tzortzakis, S.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94, 251104 (2009).
[CrossRef]

Umstadter, D.

Z.-M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673-680 (2003).
[CrossRef]

Wang, J.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[CrossRef] [PubMed]

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

Weiman, S.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Wu, H.-C.

H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 13103 (2005).
[CrossRef]

H.-C. Wu, Z.-M. Sheng, and J. Zhang, “Chirped pulse compression in nonuniform plasma Bragg gratings,” Appl. Phys. Lett. 87, 201502 (2005).
[CrossRef]

Yabuuchi, T.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Zhang, H.-Q.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Zhang, J.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

H.-C. Wu, Z.-M. Sheng, and J. Zhang, “Chirped pulse compression in nonuniform plasma Bragg gratings,” Appl. Phys. Lett. 87, 201502 (2005).
[CrossRef]

H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 13103 (2005).
[CrossRef]

Z.-M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673-680 (2003).
[CrossRef]

Zhang, L.

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Zhang, Q.-J.

H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 13103 (2005).
[CrossRef]

Appl. Phys. B

Z.-M. Sheng, J. Zhang, and D. Umstadter, “Plasma density gratings induced by intersecting laser pulses in underdense plasmas,” Appl. Phys. B 77, 673-680 (2003).
[CrossRef]

Appl. Phys. Lett.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications,” Appl. Phys. Lett. 94, 251104 (2009).
[CrossRef]

H.-C. Wu, Z.-M. Sheng, and J. Zhang, “Chirped pulse compression in nonuniform plasma Bragg gratings,” Appl. Phys. Lett. 87, 201502 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nature

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51-54 (2003).
[CrossRef] [PubMed]

Phys. Plasmas

H.-C. Wu, Z.-M. Sheng, Q.-J. Zhang, Y. Cang, and J. Zhang, “Manipulating ultrashort intense laser pulses by plasma Bragg gratings,” Phys. Plasmas 12, 13103 (2005).
[CrossRef]

C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, J. Wang, S.-Y. Chen, C.-H. Lee, and J.-Y. Lin, “Fabrication of spatial transient-density structures as high-field plasma photonic devices,” Phys. Plasmas 12, 070707 (2005).
[CrossRef]

Phys. Rev. A

B. M. Penetrante and J. N. Bardsley, “Residual energy in plasmas produced by intense subpicosecond lasers,” Phys. Rev. A 43, 3100-3113 (1991).
[CrossRef] [PubMed]

Phys. Rev. E

Y.-T. Li, Z.-M. Sheng, Y.-Y. Ma, Z. Jin, J. Zhang, Z. L. Chen, R. Kodama, T. Matsuoka, M. Tampo, K. A. Tanaka, T. Tsutsumi, T. Yabuuchi, K. Du, H.-Q. Zhang, L. Zhang, and Y.-J. Tang, “Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams,” Phys. Rev. E 72, 066404 (2005).
[CrossRef]

Phys. Rev. Lett.

C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[CrossRef] [PubMed]

K. R. Chen and J. M. Dawson, “Ion-ripple laser,” Phys. Rev. Lett. 68, 29-32 (1992).
[CrossRef] [PubMed]

Zh. Eksp. Teor. Fiz.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008-2013 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Laser threshold intensity required in order to produce H + , He + , He 2 + , and the first three charge states of Ne. Note that the results of particle-in-cell (PIC) simulations based on the Ammosov et al. formula [Eq. (1)] are in good agreement with the Coulomb-barrier model [Eq. (2)].

Fig. 2
Fig. 2

Snapshots of the electron density n e n c , atom density n H n c , and ion density n H + n c at different times. The initial H density is 0.01 n c , and the two p-polarized flat-topped pulses are identical, with a peak amplitude a 0 = 0.005 , a wavelength of 0.8 μ m , and a duration of 200 τ , where τ is the laser cycle.

Fig. 3
Fig. 3

Electron density n e n c , atom density n H n c , and ion density n H + n c at t = 110 τ for gas and laser pulse parameters similar to those given in Fig. 2, except that the laser pulses have the temporal profiles a = a 0 sin 2 ( π t t L ) with t L = 100 τ and 0 t t L .

Fig. 4
Fig. 4

Snapshots of the electron density n e n c and ion density n H + n c at different times for gas and laser pulse parameters similar to those given in Fig. 2, except for the pulse peak amplitude a 0 = 0.025 .

Fig. 5
Fig. 5

Snapshots of the density n e n c and longitudinal momentum p e x m e c of the electrons at different times for the same parameters as given in Fig. 4.

Fig. 6
Fig. 6

(a) Optical-field ionization-induced plasma Bragg density grating at t = 60 τ when the pulse peak amplitude a 0 = 0.005 and ponderomotive-force-driven plasma Bragg density grating at t = 420 τ when a 0 = 0.025 . E y (normalized by m e ω c e ) refers to the standing wave formed by the two intersecting laser pulses with amplitude a 0 = 0.005 at t = 60 τ . (b). The electron density profiles of optical-field ionization-induced gratings with different pulse peak amplitudes at t = 60 τ . Other parameters for the gas and laser pulses are the same as those given in Fig. 2.

Fig. 7
Fig. 7

Maximum longitudinal components of ion momenta of (a) the optical-field ionization-induced plasma Bragg density grating at t = 60 τ when the pulse peak amplitude a 0 = 0.005 and (b) ponderomotive-force-driven plasma Bragg density grating at t = 230 τ when a 0 = 0.025 . Other parameters for the gas and laser pulses are the same as those given in Fig. 2.

Fig. 8
Fig. 8

Snapshots of the electron density n e n c at different times for gas and laser pulse parameters similar to those given in Fig. 2, except for the pulse peak amplitude a 0 = 0.008 . Inset in (b), closeup of the density distribution.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω i = 6.6 × 10 16 Z 2 n eff 4.5 [ 10.87 Z 3 n eff 4 E H E ( t ) ] 2 n eff 1.5 × exp [ 2 3 Z 3 n eff 3 E H E ( t ) ] ( s 1 ) ,
I th ( W cm 2 ) = 4.0 × 10 9 E i 4 ( eV ) Z 2 .

Metrics