Abstract

Plasma Bragg density gratings produced by optical-field ionization in underdense gas under the irradiation of two counterpropagating laser pulses at laser intensities around 1013Wcm2 are investigated by particle-in-cell simulation. The grating is composed of interlacing layers of neutral gas and plasma (or partially ionized gas) with its density and period controlled by the initial gas density, laser wavelengths, and intersecting angles of the two laser pulses. The study shows that such gratings have a longer lifetime, about nanoseconds, as compared with those driven by the laser ponderomotive force at higher laser intensities around 1015Wcm2. They may be used for phase-matched high-harmonic generation, laser self-guiding, laser pulse compression and stretching, etc.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription