Abstract

Three fused silica samples possessing different impurity levels and exposed to a near infrared femtosecond laser are investigated. The laser-induced defects are identified from absorption, luminescence, and Raman spectroscopy. Their linear and nonlinear optical properties are measured from Kramers–Krönig calculations and third-harmonic generation microscopy experiments. No conclusive correlation between the change in the optical properties, the initial impurity levels, and the photoinduced structures could be established based on the results obtained in this study. In addition, several hypotheses (densification and color center formation) have been rejected to explain why the linear and nonlinear optical properties of the photoinduced structures follow a contradicting evolution. This phenomenon is attributed to an experimental artifact on the measurement of the third-order susceptibility due to scattering of the photoinduced structures.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
    [CrossRef]
  3. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  4. H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396-398 (1999).
    [CrossRef]
  5. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
    [CrossRef]
  6. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253-257 (2007).
    [CrossRef]
  7. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22, 2138-2143 (2005).
    [CrossRef]
  8. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, and A. Tünnermann, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express 13, 10552-10557 (2005).
    [CrossRef] [PubMed]
  9. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive-index of fs-laser-written waveguides in fused silica,” Opt. Express 14, 2151-2157 (2006).
    [CrossRef] [PubMed]
  10. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
    [CrossRef]
  11. M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221-229 (2004).
    [CrossRef]
  12. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2007).
  13. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16-48 (1998).
    [CrossRef]
  14. I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
    [CrossRef]
  15. Y. Sakurai, “Correlation between the 2.7 eV and 4.3 eV photoluminescence bands in silica glass,” J. Non-Cryst. Solids 352, 2917-2920 (2006).
    [CrossRef]
  16. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
    [CrossRef]
  17. F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27, 6199-6204 (1983).
    [CrossRef]
  18. A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80, 5145-5147 (1998).
    [CrossRef]
  19. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
    [CrossRef]
  20. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41, 4360-4364 (2002).
    [CrossRef] [PubMed]
  21. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  22. A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
    [CrossRef]
  23. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1-68 (1977).
    [CrossRef]
  24. R. W. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964-967 (1975).
    [CrossRef]

2007 (1)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253-257 (2007).
[CrossRef]

2006 (6)

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Y. Sakurai, “Correlation between the 2.7 eV and 4.3 eV photoluminescence bands in silica glass,” J. Non-Cryst. Solids 352, 2917-2920 (2006).
[CrossRef]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive-index of fs-laser-written waveguides in fused silica,” Opt. Express 14, 2151-2157 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221-229 (2004).
[CrossRef]

2003 (1)

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

2002 (2)

1999 (1)

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396-398 (1999).
[CrossRef]

1998 (3)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80, 5145-5147 (1998).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

1996 (2)

1995 (1)

I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
[CrossRef]

1983 (1)

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27, 6199-6204 (1983).
[CrossRef]

1977 (1)

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

1975 (1)

R. W. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Aoki, N.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Arai, A.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

Autric, M.

I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
[CrossRef]

Blömer, D.

Borrelli, N. F.

Bousquet, B.

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2007).

Brocas, A.

Burghoff, J.

Callan, J.

Canioni, L.

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22, 2138-2143 (2005).
[CrossRef]

Car, R.

A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80, 5145-5147 (1998).
[CrossRef]

Cardinal, T.

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Cheng, Y.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Cherlow, J.

R. W. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Chichkov, B. N.

Chin, S. L.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

Couzi, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Dai, Y.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253-257 (2007).
[CrossRef]

Davis, K. M.

Dreisow, F.

Dreyfus, R. W.

I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
[CrossRef]

Eaton, S. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

Fargin, E.

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

Finlay, R. J.

Galeener, F. L.

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27, 6199-6204 (1983).
[CrossRef]

Geissberger, A. E.

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27, 6199-6204 (1983).
[CrossRef]

Glezer, E. N.

Grodsky, R.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

R. W. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Helvajian, H.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Her, T. -H.

Herman, P.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

Hirao, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Huang, L.

Karolczak, J.

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221-229 (2004).
[CrossRef]

Kawachi, M.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Kim, D. G.

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

Krol, D. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

Le Lay, G.

I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
[CrossRef]

Lu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253-257 (2007).
[CrossRef]

Ma, H.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253-257 (2007).
[CrossRef]

Marine, W.

I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
[CrossRef]

Masuda, M.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Matsuo, S.

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396-398 (1999).
[CrossRef]

Mazur, E.

Merk, N.

I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
[CrossRef]

Midorikawa, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Milosavljevic, M.

Misawa, H.

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396-398 (1999).
[CrossRef]

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Movtchan, I. A.

I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
[CrossRef]

Naskrecki, R.

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221-229 (2004).
[CrossRef]

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

Nolte, S.

Park, S. H.

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

Pasquarello, A.

A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80, 5145-5147 (1998).
[CrossRef]

Pertsch, T.

Qiu, J.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253-257 (2007).
[CrossRef]

Reichman, W. J.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

Richardson, K.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Richardson, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22, 2138-2143 (2005).
[CrossRef]

Rivero, C.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Royon, A.

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

Sakurai, Y.

Y. Sakurai, “Correlation between the 2.7 eV and 4.3 eV photoluminescence bands in silica glass,” J. Non-Cryst. Solids 352, 2917-2920 (2006).
[CrossRef]

Saliminia, A.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

Sarger, L.

Schreiber, T.

Sentis, M.

I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
[CrossRef]

Shah, L.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

Shihoyama, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

Streltsov, A. M.

Sugimoto, N.

Sugioka, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Sun, H. -B.

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396-398 (1999).
[CrossRef]

Szameit, A.

Toyoda, K.

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Treguer, M.

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

Tünnermann, A.

Vallée, R.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

Will, M.

Xu, Y.

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396-398 (1999).
[CrossRef]

Yang, T. -T.

R. W. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Yoshino, F.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

Yu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253-257 (2007).
[CrossRef]

Zhu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253-257 (2007).
[CrossRef]

Ziolek, M.

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221-229 (2004).
[CrossRef]

Zoubir, A.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22, 2138-2143 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253-257 (2007).
[CrossRef]

J. Appl. Phys. (2)

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “Densification of silica glass induced by 0.8 and 1.5 μm intense femtosecond laser pulses,” J. Appl. Phys. 99, 093104 (2006).
[CrossRef]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

J. Non-Cryst. Solids (3)

Y. Sakurai, “Correlation between the 2.7 eV and 4.3 eV photoluminescence bands in silica glass,” J. Non-Cryst. Solids 352, 2917-2920 (2006).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Journal of the Optical Society of Korea (1)

A. Royon, B. Bousquet, L. Canioni, M. Treguer, T. Cardinal, E. Fargin, D. G. Kim, and S. H. Park, “Third-harmonic generation microscopy for material characterization,” Journal of the Optical Society of Korea 10, 188-195 (2006).
[CrossRef]

Opt. Commun. (1)

M. Ziolek, R. Naskrecki, and J. Karolczak, “Some temporal and spectral properties of femtosecond supercontinuum important in pump-probe spectroscopy,” Opt. Commun. 241, 221-229 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Rev. (1)

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396-398 (1999).
[CrossRef]

Phys. Rev. B (3)

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27, 6199-6204 (1983).
[CrossRef]

R. W. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964-967 (1975).
[CrossRef]

Phys. Rev. Lett. (1)

A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Phys. Rev. Lett. 80, 5145-5147 (1998).
[CrossRef]

Prog. Quantum Electron. (1)

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

Thin Solid Films (1)

I. A. Movtchan, R. W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, and N. Merk, “Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation,” Thin Solid Films 255, 286-289 (1995).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectra and UV region expanded (inset) for the three unexposed fused silica samples.

Fig. 2
Fig. 2

(a) Absorption change spectra for the three 5 μ J exposed fused silica samples. (b) Absorption change spectra for the three 20 μ J exposed fused silica samples.

Fig. 3
Fig. 3

(a) Luminescence spectra for the three unexposed fused silica samples at a 248 nm excitation wavelength. (b) Luminescence spectra for the three 5 μ J exposed fused silica samples at a 248 nm excitation wavelength. (c) Luminescence spectra for the three 20 μ J exposed fused silica samples at a 248 nm excitation wavelength.

Fig. 4
Fig. 4

(a) Raman spectra for the three unexposed fused silica samples at a 514.5 nm excitation wavelength. (b) Raman spectra for the three 5 μ J exposed fused silica samples at a 514.5 nm excitation wavelength. (c) Raman spectra for the three 20 μ J exposed fused silica samples at a 514.5 nm excitation wavelength.

Fig. 5
Fig. 5

Evolution of the normalized third-harmonic signal versus the z position for the 5 μ J exposed Herasil sample. The first peak corresponds to the air/bulk interface and the second peak corresponds to the bulk/defect interface. The other interfaces could not be reached because of the limited working distance of the microscope objective ( 500 μ m ) .

Fig. 6
Fig. 6

Evolution of the ratio of the third-harmonic irradiances R = I 3 ω , b u l k / d e f / I 3 ω , a i r / b u l k versus the ratio of the third-order susceptibilities a = χ d e f ( 3 ) / χ SiO 2 ( 3 ) for the 5 μ J exposed Herasil sample.

Tables (1)

Tables Icon

Table 1 Density, Al And OH Impurity Levels, Cutoff Wavelength, Refractive Indices at 656.3 and 587.6 nm, and Third-Order Susceptibility Relative to Herasil for the Unexposed Samples and Relative Change in the Third-Order Susceptibility for the 5 μ J Exposed Samples a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( ω ) = c π 0 + Δ α ( s ) s 2 ω 2 d s .
I 3 ω , a i r / b u l k ( 3 ω 4 ε 0 c 2 ) 2 I ω 3 n ω , SiO 2 3 n 3 ω , SiO 2 | J SiO 2 ( Δ k SiO 2 ; 0 ; 400 ) χ SiO 2 ( 3 ) + J d e f ( Δ k d e f ; 400 ; 600 ) χ d e f ( 3 ) + J SiO 2 ( Δ k SiO 2 ; 600 ; 1000 ) χ SiO 2 ( 3 ) | 2 ,
I 3 ω , b u l k / d e f ( 3 ω 4 ε 0 c 2 ) 2 I ω 3 n ω , d e f 3 n 3 ω , d e f | J SiO 2 ( Δ k SiO 2 ; 400 ; 0 ) χ SiO 2 ( 3 ) + J d e f ( Δ k d e f ; 0 ; 200 ) χ d e f ( 3 ) + J SiO 2 ( Δ k SiO 2 ; 200 ; 600 ) χ SiO 2 ( 3 ) | 2 ,
Δ χ ( 3 ) χ ( 3 ) = χ d e f ( 3 ) χ SiO 2 ( 3 ) χ SiO 2 ( 3 ) .

Metrics