Abstract

Three fused silica samples possessing different impurity levels and exposed to a near infrared femtosecond laser are investigated. The laser-induced defects are identified from absorption, luminescence, and Raman spectroscopy. Their linear and nonlinear optical properties are measured from Kramers–Krönig calculations and third-harmonic generation microscopy experiments. No conclusive correlation between the change in the optical properties, the initial impurity levels, and the photoinduced structures could be established based on the results obtained in this study. In addition, several hypotheses (densification and color center formation) have been rejected to explain why the linear and nonlinear optical properties of the photoinduced structures follow a contradicting evolution. This phenomenon is attributed to an experimental artifact on the measurement of the third-order susceptibility due to scattering of the photoinduced structures.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Excimer-laser-induced degradation of fused silica and calcium fluoride for 193-nm lithographic applications

V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, A. K. Bates, and C. Van Peski
Opt. Lett. 24(1) 58-60 (1999)

Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication

Arnaud Zoubir, Martin Richardson, Lionel Canioni, Arnaud Brocas, and Laurent Sarger
J. Opt. Soc. Am. B 22(10) 2138-2143 (2005)

Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining

Li Ding, Luiz Gustavo Cancado, Lukas Novotny, Wayne H. Knox, Neil Anderson, Dharmendra Jani, Jeffrey Linhardt, Richard I. Blackwell, and Jay F. Künzler
J. Opt. Soc. Am. B 26(4) 595-602 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription