Abstract

The second-order nonlinear optical coefficients of 4H-SiC and 6H-SiC have been measured by use of two second-harmonic generation methods, the rotational Maker-fringe and wedge techniques, at the fundamental wavelength of 1.064μm. Measurements on high-quality (0001) and (112¯0) plane samples as well as rigorous analyses taking into account the multiple-reflection effects allowed us to accurately determine the magnitudes of the nonlinear optical coefficients. The obtained values are d31=6.7pmV, d15=6.5pmV, and d33=12.5pmV for 6H-SiC; and d31=6.5pmV, d15=6.7pmV, and d33=11.7pmV for 4H-SiC.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Singh, J. R. Potopowicz, L. G. Van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53-56 (1971).
    [CrossRef]
  2. P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second-harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883-1885 (1995).
    [CrossRef]
  3. S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618-620 (1999).
    [CrossRef]
  4. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B 14, 2268-2294 (1997).
    [CrossRef]
  5. I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34, 797-833 (2002).
    [CrossRef]
  6. N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, “Growth and defect reduction of bulk SiC crystals,” Mater. Sci. Forum 389-393, 29-34 (2002).
    [CrossRef]
  7. N. Ohtani, M. Katsuno, T. Fujimoto, and H. Yashiro, “Defect formation and reduction during bulk SiC growth,” in Silicon Carbide--Recent Major Advances, W.J.Choyke, H.Matsunami, and G.Pensl, eds. (Springer-Verlag, 2004), pp. 137-162.
  8. M. Abe, I. Shoji, J. Suda, and T. Kondo, “Comprehensive analysis of multiple-reflection effects on rotational Maker-fringe experiments,” J. Opt. Soc. Am. B 25, 1616-1624 (2008).
    [CrossRef]
  9. J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. Lett. 1, 1739-1744 (1970).
  10. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057-2074 (1992).
    [CrossRef]
  11. K. Hagimoto and A. Mito, “Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm,” Appl. Opt. 34, 8276-8282 (1995).
    [CrossRef] [PubMed]
  12. F. N. H. Robinson, “Relations between the components of the nonlinear polarizability tensor in cubic and hexagonal II-VI compounds,” Phys. Lett. 26, 435-436 (1968).
    [CrossRef]
  13. J. Chen, Z. H. Levine, and J. W. Wilkins, “Linear and nonlinear optical properties of four polytypes of SiC,” Phys. Rev. B 50, 11514-11519 (1994).
    [CrossRef]

2008

2002

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34, 797-833 (2002).
[CrossRef]

N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, “Growth and defect reduction of bulk SiC crystals,” Mater. Sci. Forum 389-393, 29-34 (2002).
[CrossRef]

1999

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618-620 (1999).
[CrossRef]

1997

1995

K. Hagimoto and A. Mito, “Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm,” Appl. Opt. 34, 8276-8282 (1995).
[CrossRef] [PubMed]

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second-harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883-1885 (1995).
[CrossRef]

1994

J. Chen, Z. H. Levine, and J. W. Wilkins, “Linear and nonlinear optical properties of four polytypes of SiC,” Phys. Rev. B 50, 11514-11519 (1994).
[CrossRef]

1992

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057-2074 (1992).
[CrossRef]

1971

S. Singh, J. R. Potopowicz, L. G. Van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53-56 (1971).
[CrossRef]

1970

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. Lett. 1, 1739-1744 (1970).

1968

F. N. H. Robinson, “Relations between the components of the nonlinear polarizability tensor in cubic and hexagonal II-VI compounds,” Phys. Lett. 26, 435-436 (1968).
[CrossRef]

Abe, M.

Adolph, B.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618-620 (1999).
[CrossRef]

Aigo, T.

N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, “Growth and defect reduction of bulk SiC crystals,” Mater. Sci. Forum 389-393, 29-34 (2002).
[CrossRef]

Bechstedt, F.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618-620 (1999).
[CrossRef]

Chen, J.

J. Chen, Z. H. Levine, and J. W. Wilkins, “Linear and nonlinear optical properties of four polytypes of SiC,” Phys. Rev. B 50, 11514-11519 (1994).
[CrossRef]

Fujimoto, T.

N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, “Growth and defect reduction of bulk SiC crystals,” Mater. Sci. Forum 389-393, 29-34 (2002).
[CrossRef]

N. Ohtani, M. Katsuno, T. Fujimoto, and H. Yashiro, “Defect formation and reduction during bulk SiC growth,” in Silicon Carbide--Recent Major Advances, W.J.Choyke, H.Matsunami, and G.Pensl, eds. (Springer-Verlag, 2004), pp. 137-162.

Hagimoto, K.

Ito, R.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34, 797-833 (2002).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B 14, 2268-2294 (1997).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. Lett. 1, 1739-1744 (1970).

Katsuno, M.

N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, “Growth and defect reduction of bulk SiC crystals,” Mater. Sci. Forum 389-393, 29-34 (2002).
[CrossRef]

N. Ohtani, M. Katsuno, T. Fujimoto, and H. Yashiro, “Defect formation and reduction during bulk SiC growth,” in Silicon Carbide--Recent Major Advances, W.J.Choyke, H.Matsunami, and G.Pensl, eds. (Springer-Verlag, 2004), pp. 137-162.

Ketterson, J. B.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second-harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883-1885 (1995).
[CrossRef]

Kitamoto, A.

Kondo, T.

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. Lett. 1, 1739-1744 (1970).

Levine, Z. H.

J. Chen, Z. H. Levine, and J. W. Wilkins, “Linear and nonlinear optical properties of four polytypes of SiC,” Phys. Rev. B 50, 11514-11519 (1994).
[CrossRef]

Lin, W. P.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second-harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883-1885 (1995).
[CrossRef]

Lundquist, P. M.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second-harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883-1885 (1995).
[CrossRef]

Mito, A.

Niedermeier, S.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618-620 (1999).
[CrossRef]

Ohtani, N.

N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, “Growth and defect reduction of bulk SiC crystals,” Mater. Sci. Forum 389-393, 29-34 (2002).
[CrossRef]

N. Ohtani, M. Katsuno, T. Fujimoto, and H. Yashiro, “Defect formation and reduction during bulk SiC growth,” in Silicon Carbide--Recent Major Advances, W.J.Choyke, H.Matsunami, and G.Pensl, eds. (Springer-Verlag, 2004), pp. 137-162.

Potopowicz, J. R.

S. Singh, J. R. Potopowicz, L. G. Van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53-56 (1971).
[CrossRef]

Razeghi, M.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second-harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883-1885 (1995).
[CrossRef]

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057-2074 (1992).
[CrossRef]

Robinson, F. N. H.

F. N. H. Robinson, “Relations between the components of the nonlinear polarizability tensor in cubic and hexagonal II-VI compounds,” Phys. Lett. 26, 435-436 (1968).
[CrossRef]

Sauerbrey, R.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618-620 (1999).
[CrossRef]

Schillinger, H.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618-620 (1999).
[CrossRef]

Shirane, M.

Shoji, I.

Singh, S.

S. Singh, J. R. Potopowicz, L. G. Van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53-56 (1971).
[CrossRef]

Suda, J.

Van Uitert, L. G.

S. Singh, J. R. Potopowicz, L. G. Van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53-56 (1971).
[CrossRef]

Wemple, S. H.

S. Singh, J. R. Potopowicz, L. G. Van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53-56 (1971).
[CrossRef]

Wilkins, J. W.

J. Chen, Z. H. Levine, and J. W. Wilkins, “Linear and nonlinear optical properties of four polytypes of SiC,” Phys. Rev. B 50, 11514-11519 (1994).
[CrossRef]

Wong, G. K.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second-harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883-1885 (1995).
[CrossRef]

Yashiro, H.

N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, “Growth and defect reduction of bulk SiC crystals,” Mater. Sci. Forum 389-393, 29-34 (2002).
[CrossRef]

N. Ohtani, M. Katsuno, T. Fujimoto, and H. Yashiro, “Defect formation and reduction during bulk SiC growth,” in Silicon Carbide--Recent Major Advances, W.J.Choyke, H.Matsunami, and G.Pensl, eds. (Springer-Verlag, 2004), pp. 137-162.

Appl. Opt.

Appl. Phys. Lett.

S. Singh, J. R. Potopowicz, L. G. Van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53-56 (1971).
[CrossRef]

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second-harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883-1885 (1995).
[CrossRef]

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618-620 (1999).
[CrossRef]

IEEE J. Quantum Electron.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057-2074 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Mater. Sci. Forum

N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, and H. Yashiro, “Growth and defect reduction of bulk SiC crystals,” Mater. Sci. Forum 389-393, 29-34 (2002).
[CrossRef]

Opt. Quantum Electron.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34, 797-833 (2002).
[CrossRef]

Phys. Lett.

F. N. H. Robinson, “Relations between the components of the nonlinear polarizability tensor in cubic and hexagonal II-VI compounds,” Phys. Lett. 26, 435-436 (1968).
[CrossRef]

Phys. Rev. B

J. Chen, Z. H. Levine, and J. W. Wilkins, “Linear and nonlinear optical properties of four polytypes of SiC,” Phys. Rev. B 50, 11514-11519 (1994).
[CrossRef]

Phys. Rev. Lett.

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. Lett. 1, 1739-1744 (1970).

Other

N. Ohtani, M. Katsuno, T. Fujimoto, and H. Yashiro, “Defect formation and reduction during bulk SiC growth,” in Silicon Carbide--Recent Major Advances, W.J.Choyke, H.Matsunami, and G.Pensl, eds. (Springer-Verlag, 2004), pp. 137-162.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Incident angle versus the SH power for d 33 of the ( 11 2 ¯ 0 ) 6H-SiC (SiXON) plane-parallel plate in the rotational Maker-fringe measurement (s–s configuration). The open circles are the experimental data, and the solid curve shows the theoretical fitting curve.

Fig. 2
Fig. 2

Schematic drawing of the preparation of the ( 11 2 ¯ 0 ) -plane wedge samples.

Fig. 3
Fig. 3

Sample thickness versus the SH power for d 31 of the ( 11 2 ¯ 0 ) 6H-SiC (Intrinsic Semiconductor Corp.) wedge sample. The open circles are the experimental data, and the solid curve shows the theoretical fitting curve.

Fig. 4
Fig. 4

Sample thickness versus the SH power for d 15 of the ( 11 2 ¯ 0 ) 4H-SiC (Cree) wedge sample. The open circles are the experimental data, and the solid curve shows the theoretical fitting curve.

Tables (4)

Tables Icon

Table 1 Previously Reported Second-order Nonlinear Optical Coefficients of SiC

Tables Icon

Table 2 SiC Samples Used in the Measurements

Tables Icon

Table 3 Refractive Indices of the Samples Used in the Data Analyses

Tables Icon

Table 4 Measured Second-order Nonlinear Optical Coefficients of 6H and 4H-SiC a

Metrics