Abstract

Using the three dimensional finite-difference time-domain (FDTD) method, we calculate the radiation force from an incident plane wave on both dielectric and absorbing particles in the Lorentz–Mie regime via the Maxwell stress tensor approach. We find that the radiation force changes with particle permittivity, and we categorize the force into three regions: increasing, fluctuating, and constant. We discuss how particle size, shape, orientation and absorption affect the radiation force. A nanoscale solar sail is proposed based on our calculation. A detailed understanding of the optical force of a plane wave on particles in the Lorentz–Mie regime is fundamental for designing nanoscale solar sail systems and optical traps from a set of interfering plane waves.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Maxwell, A Treatise on Electricity and Magnetism (Oxford, 1873).
  2. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  4. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004).
    [CrossRef]
  5. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
    [CrossRef]
  6. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769-771 (1987).
    [CrossRef] [PubMed]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003).
    [CrossRef] [PubMed]
  8. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095-13100 (2006).
    [CrossRef] [PubMed]
  9. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental-observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314-317 (1986).
    [CrossRef] [PubMed]
  10. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  11. G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser-beams--theoretical and experimental-study,” Phys. Lett. A 59, 6-8 (1976).
    [CrossRef]
  12. R. C. Gauthier, “Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner,” Appl. Opt. 40, 1961-1973 (2001).
    [CrossRef]
  13. R. C. Gauthier and M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421-6431 (1998).
    [CrossRef]
  14. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
    [CrossRef] [PubMed]
  15. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
    [CrossRef]
  16. L. Lorenz, “Lysbevaegelsen i og uden for en haf plane lysbolger belyst kulge,” Vidensk. Selk. Skr. 6, 1-62 (1890).
  17. G. Mie, “Beitrage zur optik truber medien, speziell kolloidaler metallosungen,” Ann. Phys. 30, 377-452 (1908).
    [CrossRef]
  18. P. Debye, “Der Lichtdruck auf Kugeln von beliebigem material,” Ann. Phys. 30, 57-136 (1909).
    [CrossRef]
  19. G. Gouesbet, B. Maheu, and G. Grehan, “Light-scattering from a sphere arbitrarily located in a Gaussian-beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443 (1988).
    [CrossRef]
  20. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic-fields for a spherical-particle irradiated by a focused laser-beam,” J. Appl. Phys. 64, 1632-1639 (1988).
    [CrossRef]
  21. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net-radiation force and torque for a spherical-particle illuminated by a focused laser-beam,” J. Appl. Phys. 66, 4594-4602 (1989).
    [CrossRef]
  22. J. P. Barton, “Internal and near-surface electromagnetic-fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542-5551 (1995).
    [CrossRef] [PubMed]
  23. G. Gouesbet and L. Mees, “Generalized Lorentz-Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333-1341 (1999).
    [CrossRef]
  24. T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
    [CrossRef]
  25. B. Peterson and S. Strom, “T-matrix formulation of electromagnetic scattering from multilayered scatterers,” Phys. Rev. D 10, 2670-2684 (1974).
    [CrossRef]
  26. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996).
    [CrossRef]
  27. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
    [CrossRef]
  28. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994).
    [CrossRef]
  29. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13, 2321-2336 (2005).
    [CrossRef] [PubMed]
  30. D. W. Zhang, X. C. Yuan, S. C. Tjin, and S. Krishnan, “Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping,” Opt. Express 12, 2220-2230 (2004).
    [CrossRef] [PubMed]
  31. W. Sun, S. Pan, and Y. C. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt. 53, 2691-2700 (2006).
    [CrossRef]
  32. R. C. Gauthier, “Computation of the optical trapping force using an FDTD based technique,” Opt. Express 13, 3707-3718 (2005).
    [CrossRef] [PubMed]
  33. D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express 16, 2942-2957 (2008).
    [CrossRef] [PubMed]
  34. M. Landgraf, K. Augustsson, E. Grun, and B. A. S. Gustafson, “Deflection of the local interstellar dust flow by solar radiation pressure,” Science 286, 2319-2322 (1999).
    [CrossRef] [PubMed]
  35. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter--crystallization and binding in intense optical-fields,” Science 249, 749-754 (1990).
    [CrossRef] [PubMed]
  36. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, “Passive guiding and sorting of small particles with optical binding forces,” Opt. Lett. 31, 3378-3380 (2006).
    [CrossRef] [PubMed]
  37. J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454, 501-504 (2008).
    [CrossRef] [PubMed]
  38. J. J. Xiao and C. T. Chan, “Calculation of the optical force on an infinite cylinder with arbitrary cross section by the boundary element method,” J. Opt. Soc. Am. B 25, 1553-1561 (2008).
    [CrossRef]
  39. T. M. Grzegorczyk and J. A. Kong, “Analytical expression of the force due to multiple TM plane-wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size,” J. Opt. Soc. Am. B 24, 644-652 (2007).
    [CrossRef]
  40. V. Wong and M. A. Ratner, “Size dependence of gradient and nongradient optical forces in silver nanoparticles,” J. Opt. Soc. Am. B 24, 106-112 (2007).
    [CrossRef]
  41. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing mie particles,” Phys. Rev. Lett. 97, 133902 (2006).
    [CrossRef] [PubMed]
  42. B. T. Draine and H. M. Lee, “Optical-properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89-108 (1984).
    [CrossRef]
  43. A. G. Hoekstra, M. Frijlink, L. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A 18, 1944-1953 (2001).
    [CrossRef]
  44. T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).
  45. W. S. Kim, L. Jia, and E. L. Thomas, “Hierarchically ordered topographic patterns via plasmonic mask photolithography,” Adv. Mater. (Weinheim, Ger.) 21, 1921-1926 (2009).
    [CrossRef]
  46. D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microw. Guid. Wave Lett. 6, 97-99 (1996).
    [CrossRef]
  47. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 302-307 (1966).
  48. V. Wong and M. A. Ratner, “Explicit computation of gradient and nongradient contributions to optical forces in the discrete-dipole approximation,” J. Opt. Soc. Am. B 23, 1801-1814 (2006).
    [CrossRef]
  49. G. le Faure and H. de Graffigny, The Extraordinary Adventures of a Russian Scientist (1889).
  50. B. G. Lee, B. A. Small, K. Bergman, Q. F. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31, 2701-2703 (2006).
    [CrossRef] [PubMed]
  51. Q. F. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733-2735 (2005).
    [CrossRef] [PubMed]
  52. L. Fang and M. S. Hsiao, “Bilateral testing of nano-scale fault-tolerant circuits,” J. Electron. Test. Theory Appl. 24, 285-296 (2008).
    [CrossRef]
  53. H. J. Butt, “Towards powering nanometer-scale devices with molecular motors: single molecule engines,” Macromol. Chem. Phys. 207, 573-575 (2006).
    [CrossRef]
  54. Univ. Oregon Solar Radiation Monitoring Laboratory, “Solar radiation basics,” http://solardat.uoregon.edu/SolarRadiationBasics.html.
  55. C. R. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications (Springer-Verlag Telos, 1999).

2009 (1)

W. S. Kim, L. Jia, and E. L. Thomas, “Hierarchically ordered topographic patterns via plasmonic mask photolithography,” Adv. Mater. (Weinheim, Ger.) 21, 1921-1926 (2009).
[CrossRef]

2008 (4)

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454, 501-504 (2008).
[CrossRef] [PubMed]

L. Fang and M. S. Hsiao, “Bilateral testing of nano-scale fault-tolerant circuits,” J. Electron. Test. Theory Appl. 24, 285-296 (2008).
[CrossRef]

D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express 16, 2942-2957 (2008).
[CrossRef] [PubMed]

J. J. Xiao and C. T. Chan, “Calculation of the optical force on an infinite cylinder with arbitrary cross section by the boundary element method,” J. Opt. Soc. Am. B 25, 1553-1561 (2008).
[CrossRef]

2007 (2)

2006 (7)

2005 (3)

2004 (2)

2003 (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

2001 (3)

1999 (2)

M. Landgraf, K. Augustsson, E. Grun, and B. A. S. Gustafson, “Deflection of the local interstellar dust flow by solar radiation pressure,” Science 286, 2319-2322 (1999).
[CrossRef] [PubMed]

G. Gouesbet and L. Mees, “Generalized Lorentz-Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333-1341 (1999).
[CrossRef]

1998 (2)

R. C. Gauthier and M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421-6431 (1998).
[CrossRef]

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

1996 (3)

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996).
[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microw. Guid. Wave Lett. 6, 97-99 (1996).
[CrossRef]

1995 (1)

1994 (2)

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994).
[CrossRef]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

1992 (2)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

1990 (1)

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter--crystallization and binding in intense optical-fields,” Science 249, 749-754 (1990).
[CrossRef] [PubMed]

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net-radiation force and torque for a spherical-particle illuminated by a focused laser-beam,” J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

1988 (3)

G. Gouesbet, B. Maheu, and G. Grehan, “Light-scattering from a sphere arbitrarily located in a Gaussian-beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443 (1988).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic-fields for a spherical-particle irradiated by a focused laser-beam,” J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

1986 (2)

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental-observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

1984 (1)

B. T. Draine and H. M. Lee, “Optical-properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89-108 (1984).
[CrossRef]

1976 (1)

G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser-beams--theoretical and experimental-study,” Phys. Lett. A 59, 6-8 (1976).
[CrossRef]

1974 (1)

B. Peterson and S. Strom, “T-matrix formulation of electromagnetic scattering from multilayered scatterers,” Phys. Rev. D 10, 2670-2684 (1974).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 302-307 (1966).

1909 (1)

P. Debye, “Der Lichtdruck auf Kugeln von beliebigem material,” Ann. Phys. 30, 57-136 (1909).
[CrossRef]

1908 (1)

G. Mie, “Beitrage zur optik truber medien, speziell kolloidaler metallosungen,” Ann. Phys. 30, 377-452 (1908).
[CrossRef]

1890 (1)

L. Lorenz, “Lysbevaegelsen i og uden for en haf plane lysbolger belyst kulge,” Vidensk. Selk. Skr. 6, 1-62 (1890).

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net-radiation force and torque for a spherical-particle illuminated by a focused laser-beam,” J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic-fields for a spherical-particle irradiated by a focused laser-beam,” J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

Almeida, V. R.

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental-observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Ashman, M.

Augustsson, K.

M. Landgraf, K. Augustsson, E. Grun, and B. A. S. Gustafson, “Deflection of the local interstellar dust flow by solar radiation pressure,” Science 286, 2319-2322 (1999).
[CrossRef] [PubMed]

Barton, J. P.

J. P. Barton, “Internal and near-surface electromagnetic-fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542-5551 (1995).
[CrossRef] [PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net-radiation force and torque for a spherical-particle illuminated by a focused laser-beam,” J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic-fields for a spherical-particle irradiated by a focused laser-beam,” J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

Bar-Ziv, R.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Bechinger, C.

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454, 501-504 (2008).
[CrossRef] [PubMed]

Benito, D. C.

Bergman, K.

Bjorkholm, J. E.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental-observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Blum, J.

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Burns, M. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter--crystallization and binding in intense optical-fields,” Science 249, 749-754 (1990).
[CrossRef] [PubMed]

Butt, H. J.

H. J. Butt, “Towards powering nanometer-scale devices with molecular motors: single molecule engines,” Macromol. Chem. Phys. 207, 573-575 (2006).
[CrossRef]

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental-observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

Chan, C. T.

Chapin, S. C.

Chu, S.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental-observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

de Graffigny, H.

G. le Faure and H. de Graffigny, The Extraordinary Adventures of a Russian Scientist (1889).

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Debye, P.

P. Debye, “Der Lichtdruck auf Kugeln von beliebigem material,” Ann. Phys. 30, 57-136 (1909).
[CrossRef]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Draine, B. T.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

B. T. Draine and H. M. Lee, “Optical-properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89-108 (1984).
[CrossRef]

Dufresne, E. R.

S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14, 13095-13100 (2006).
[CrossRef] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

Fang, L.

L. Fang and M. S. Hsiao, “Bilateral testing of nano-scale fault-tolerant circuits,” J. Electron. Test. Theory Appl. 24, 285-296 (2008).
[CrossRef]

Flatau, P. J.

Fournier, J. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter--crystallization and binding in intense optical-fields,” Science 249, 749-754 (1990).
[CrossRef] [PubMed]

Frijlink, M.

Gauthier, R. C.

Germain, V.

Golovchenko, J. A.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter--crystallization and binding in intense optical-fields,” Science 249, 749-754 (1990).
[CrossRef] [PubMed]

Gouesbet, G.

Greenberg, J. M.

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Grehan, G.

Grier, D. G.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Grun, E.

M. Landgraf, K. Augustsson, E. Grun, and B. A. S. Gustafson, “Deflection of the local interstellar dust flow by solar radiation pressure,” Science 286, 2319-2322 (1999).
[CrossRef] [PubMed]

Grzegorczyk, T. M.

Gustafson, B. A. S.

M. Landgraf, K. Augustsson, E. Grun, and B. A. S. Gustafson, “Deflection of the local interstellar dust flow by solar radiation pressure,” Science 286, 2319-2322 (1999).
[CrossRef] [PubMed]

Hanna, S.

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Helden, L.

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454, 501-504 (2008).
[CrossRef] [PubMed]

Hoekstra, A. G.

Hsiao, M. S.

L. Fang and M. S. Hsiao, “Bilateral testing of nano-scale fault-tolerant circuits,” J. Electron. Test. Theory Appl. 24, 285-296 (2008).
[CrossRef]

Imbert, C.

G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser-beams--theoretical and experimental-study,” Phys. Lett. A 59, 6-8 (1976).
[CrossRef]

Ishimoto, H.

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Jia, L.

W. S. Kim, L. Jia, and E. L. Thomas, “Hierarchically ordered topographic patterns via plasmonic mask photolithography,” Adv. Mater. (Weinheim, Ger.) 21, 1921-1926 (2009).
[CrossRef]

Jiang, Y. C.

W. Sun, S. Pan, and Y. C. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt. 53, 2691-2700 (2006).
[CrossRef]

Kemp, B. A.

T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, “Passive guiding and sorting of small particles with optical binding forces,” Opt. Lett. 31, 3378-3380 (2006).
[CrossRef] [PubMed]

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing mie particles,” Phys. Rev. Lett. 97, 133902 (2006).
[CrossRef] [PubMed]

Kim, W. S.

W. S. Kim, L. Jia, and E. L. Thomas, “Hierarchically ordered topographic patterns via plasmonic mask photolithography,” Adv. Mater. (Weinheim, Ger.) 21, 1921-1926 (2009).
[CrossRef]

Kong, J. A.

Kozasa, T.

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Krishnan, S.

Landgraf, M.

M. Landgraf, K. Augustsson, E. Grun, and B. A. S. Gustafson, “Deflection of the local interstellar dust flow by solar radiation pressure,” Science 286, 2319-2322 (1999).
[CrossRef] [PubMed]

le Faure, G.

G. le Faure and H. de Graffigny, The Extraordinary Adventures of a Russian Scientist (1889).

Lee, B. G.

Lee, H. M.

B. T. Draine and H. M. Lee, “Optical-properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89-108 (1984).
[CrossRef]

Lipson, M.

Lorenz, L.

L. Lorenz, “Lysbevaegelsen i og uden for en haf plane lysbolger belyst kulge,” Vidensk. Selk. Skr. 6, 1-62 (1890).

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Mackowski, D. W.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996).
[CrossRef]

Maheu, B.

Mansuripur, M.

Maxwell, J. C.

J. C. Maxwell, A Treatise on Electricity and Magnetism (Oxford, 1873).

McInnes, C. R.

C. R. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications (Springer-Verlag Telos, 1999).

Mees, L.

Meller, A.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Mie, G.

G. Mie, “Beitrage zur optik truber medien, speziell kolloidaler metallosungen,” Ann. Phys. 30, 377-452 (1908).
[CrossRef]

Mikhael, J.

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454, 501-504 (2008).
[CrossRef] [PubMed]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996).
[CrossRef]

Moloney, J. V.

Mukai, T.

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

Pan, S.

W. Sun, S. Pan, and Y. C. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt. 53, 2691-2700 (2006).
[CrossRef]

Peterson, B.

B. Peterson and S. Strom, “T-matrix formulation of electromagnetic scattering from multilayered scatterers,” Phys. Rev. D 10, 2670-2684 (1974).
[CrossRef]

Ratner, M. A.

Roosen, G.

G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser-beams--theoretical and experimental-study,” Phys. Lett. A 59, 6-8 (1976).
[CrossRef]

Roth, J.

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454, 501-504 (2008).
[CrossRef] [PubMed]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net-radiation force and torque for a spherical-particle illuminated by a focused laser-beam,” J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic-fields for a spherical-particle irradiated by a focused laser-beam,” J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Simpson, S. H.

Sloot, P. M. A.

Small, B. A.

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Strom, S.

B. Peterson and S. Strom, “T-matrix formulation of electromagnetic scattering from multilayered scatterers,” Phys. Rev. D 10, 2670-2684 (1974).
[CrossRef]

Sullivan, D. M.

D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microw. Guid. Wave Lett. 6, 97-99 (1996).
[CrossRef]

Sun, W.

W. Sun, S. Pan, and Y. C. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt. 53, 2691-2700 (2006).
[CrossRef]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Thomas, E. L.

W. S. Kim, L. Jia, and E. L. Thomas, “Hierarchically ordered topographic patterns via plasmonic mask photolithography,” Adv. Mater. (Weinheim, Ger.) 21, 1921-1926 (2009).
[CrossRef]

Tjin, S. C.

Tlusty, T.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996).
[CrossRef]

Waters, L.

Wong, V.

Xiao, J. J.

Xu, Q. F.

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 302-307 (1966).

Yuan, X. C.

Zakharian, A. R.

Zhang, D. W.

Adv. Mater. (Weinheim, Ger.) (1)

W. S. Kim, L. Jia, and E. L. Thomas, “Hierarchically ordered topographic patterns via plasmonic mask photolithography,” Adv. Mater. (Weinheim, Ger.) 21, 1921-1926 (2009).
[CrossRef]

Ann. Phys. (2)

G. Mie, “Beitrage zur optik truber medien, speziell kolloidaler metallosungen,” Ann. Phys. 30, 377-452 (1908).
[CrossRef]

P. Debye, “Der Lichtdruck auf Kugeln von beliebigem material,” Ann. Phys. 30, 57-136 (1909).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Appl. Opt. (3)

Astron. Astrophys. (1)

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Astrophys. J. (2)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

B. T. Draine and H. M. Lee, “Optical-properties of interstellar graphite and silicate grains,” Astrophys. J. 285, 89-108 (1984).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

IEEE Microw. Guid. Wave Lett. (1)

D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microw. Guid. Wave Lett. 6, 97-99 (1996).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 302-307 (1966).

J. Appl. Phys. (2)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic-fields for a spherical-particle irradiated by a focused laser-beam,” J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net-radiation force and torque for a spherical-particle illuminated by a focused laser-beam,” J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

J. Electron. Test. Theory Appl. (1)

L. Fang and M. S. Hsiao, “Bilateral testing of nano-scale fault-tolerant circuits,” J. Electron. Test. Theory Appl. 24, 285-296 (2008).
[CrossRef]

J. Mod. Opt. (1)

W. Sun, S. Pan, and Y. C. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt. 53, 2691-2700 (2006).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (4)

J. Quant. Spectrosc. Radiat. Transf. (1)

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55, 535-575 (1996).
[CrossRef]

Macromol. Chem. Phys. (1)

H. J. Butt, “Towards powering nanometer-scale devices with molecular motors: single molecule engines,” Macromol. Chem. Phys. 207, 573-575 (2006).
[CrossRef]

Nature (3)

J. Mikhael, J. Roth, L. Helden, and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline surfaces,” Nature 454, 501-504 (2008).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Lett. A (1)

G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser-beams--theoretical and experimental-study,” Phys. Lett. A 59, 6-8 (1976).
[CrossRef]

Phys. Rev. D (1)

B. Peterson and S. Strom, “T-matrix formulation of electromagnetic scattering from multilayered scatterers,” Phys. Rev. D 10, 2670-2684 (1974).
[CrossRef]

Phys. Rev. Lett. (4)

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental-observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314-317 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Optical momentum transfer to absorbing mie particles,” Phys. Rev. Lett. 97, 133902 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Science (2)

M. Landgraf, K. Augustsson, E. Grun, and B. A. S. Gustafson, “Deflection of the local interstellar dust flow by solar radiation pressure,” Science 286, 2319-2322 (1999).
[CrossRef] [PubMed]

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter--crystallization and binding in intense optical-fields,” Science 249, 749-754 (1990).
[CrossRef] [PubMed]

Vidensk. Selk. Skr. (1)

L. Lorenz, “Lysbevaegelsen i og uden for en haf plane lysbolger belyst kulge,” Vidensk. Selk. Skr. 6, 1-62 (1890).

Other (4)

J. C. Maxwell, A Treatise on Electricity and Magnetism (Oxford, 1873).

G. le Faure and H. de Graffigny, The Extraordinary Adventures of a Russian Scientist (1889).

Univ. Oregon Solar Radiation Monitoring Laboratory, “Solar radiation basics,” http://solardat.uoregon.edu/SolarRadiationBasics.html.

C. R. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications (Springer-Verlag Telos, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

( X , Y , Z ) computational domain. The Z axis is perpendicular to the plane of the paper. Space is discretized into cubic elements Δ X , Δ Y , Δ Z . The boundary outside the dashed line is the PML. A spherical particle resides in the center of the domain, and a plane wave with polarization along Z ̂ is allowed to propagate along the Y direction.

Fig. 2
Fig. 2

(a) Radiation force on spherical particles for ε 0 < ε R < 30 ε 0 . (b) Radiation force on spherical dielectric particles for ε 0 < ε r < 3.32 ε 0 .

Fig. 3
Fig. 3

Radiation forces on dielectric particles of four shapes as a function of d eff λ . Inset, orientation of the particles. The dashed curves are the approximation curves η × d eff 2 η = 0.50 Nm J for the sphere, η = 0.70 Nm J for the cubic, η = 0.33 Nm J for the triangular prism oriented to the left, and η = 0.43 Nm J for the triangular prism oriented to the right.

Fig. 4
Fig. 4

(a) Solid curve, radiation force versus γ for a family of rectangular parallelepipeds with side length along the Z direction of γ a , and side lengths along X , Y directions of a γ 0.5 ; dashed curve, approximation, plotted from the equation F = F 1 + 4 F 2 a 2 γ 0.5 2 F 3 a 2 γ 1 . (b) Radiation force for tower-shaped rectangular parallelepiped with side lengths 1080, 216, 216 nm . One of the shorter edges of the rectangular parallelepiped is along the Y direction. It rotates around the Y axis, and optical forces change greatly for different orientations of the particle. (c) Radiation force for plate with side lengths 630, 630, 126 nm . (d) Radiation force for cube with side lengths 370 nm . Radiation force remains nearly constant for different orientations. The volume of the rod, cube, and plate in the above figures are almost the same.

Fig. 5
Fig. 5

Parameter κ for particles with various symmetries.

Fig. 6
Fig. 6

F V ( F V ) max d eff λ for ε r = 2.59 to ε r = 19 and ε r = 2.59 + i to ε r = 19 + i . The scaled force per unit volume on a particle struck by the incident plane wave reaches a maximum at 0.2 λ < d eff < 0.6 λ and then decreases as d eff increases.

Fig. 7
Fig. 7

(a) Radiation force on absorbing particles of four shapes. The parameters for the light source and particles are in the text. (b) Comparison between the optical forces on dielectric spherical particles ( ε r = 16 ) and absorbing spherical particles ( ε r = 16 + i ) . (c) Comparison between the optical forces on dielectric spherical particles ( ε r = 2.56 ) and absorbing spherical particles ( ε r = 2.56 + i ) .

Fig. 8
Fig. 8

(a) Our calculation of the radiation force on absorbing sphere. (b) The rigorous calculation of the radiation force, reprinted figure with permission from [41] (http://link.aps.org/doi/10.1103/PhysRevLett.97.133902). Copyright (2006) by the American Physical Society. We use different calculation methods, and our calculation results match very well.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Δ r = d eff 60.
f = S 0 T ̃ n d S .
T i , j = ε 0 E i E j + μ 0 H i H j 0.5 ( ε 0 E 2 + μ 0 H 2 ) δ i , j .
F τ = 1 τ 0 τ f d t .
F n τ = 0.5 Re [ α * ( E n * ) E n + i k α * ( E n * × B n ) ] .
E n = E i , n + m E n m .
p n = α ( E i , n + m E n m ) .
E n m = exp ( i k r n m ) [ ( k 2 r n m + i k r n m 2 1 r n m 3 ) p m + ( k 2 r n m 3 i k r n m 2 + 3 r n m 3 ) r ̂ n m ( r ̂ n m p m ) ] ,
m = 1 N A n m p m = α E i , n .
p m = α P m , 1 ( α ) P m , 2 ( α ) .
E n m = α P m , 1 ( α ) P m , 2 ( α ) .
α = α 0 ( 1 2 i k 3 α 0 3 ) .
E n m = α 0 P m , 1 ( α 0 ) P m , 2 ( α 0 ) .
( E n * ) E n = [ ( E i , n * + m n E n m * ) ] ( E i , n + m n E n m ) = ( E i , n * ) E i , n + m n ( E n m * ) E i , n + ( E i , n * ) m n E n m + ( m n E n m * ) m n E n m .
( E n * ) E n = m n ( E n m * ) E i , n + ( E i , n * ) m n E n m + ( m n E n m * ) m n E n m .
( E n * ) E n = α 0 P 1 ( α 0 ) P 2 ( α 0 ) .
B n = B i , n + m B n m ,
B n m = exp ( i k r n m ) r n m k 2 ( 1 1 i k r n m ) ( n ̂ n m × p m ) .
E n * × B n = α 0 P 1 ( α 0 ) P 2 ( α 0 ) .
| F τ | = | α 0 2 P 1 ( α 0 2 ) P 2 ( α 0 2 ) | = C ( ε r ε background ε r + 2 ε background ) 2 [ i = 0 C i ( ε r ε background ε r + 2 ε background ) i j = 0 C j ( ε r ε background ε r + 2 ε background ) j ] .
| F τ | = C ( ε r ε background ε r + 2 ε background ) 2 .
F = η d eff 2 .
F = F 1 + F 2 [ n n ( q n ) ( q n ) ] d S F 3 [ ( q n ) ( q n ) ] d S .
κ = ( F max F min ) F average .
β = radiation force Γ ( ρ × volume ) .
a = ( F V ) max ρ .
δ = λ ( 2 π 0.5 ε R 2 + ε I 2 0.5 ε R ) .

Metrics