Abstract

The characteristics of pulse-shaping dynamics based on four structural parameters in a fiber laser without any dispersion compensation are studied numerically. The simulations show that the four structural parameters, i.e., the location and bandwidth of the spectral filter and the location and output coupling ratio of the output coupler, are crucial for achieving high pulse energy and high pulse peak power in all-normal-dispersion fiber lasers. To obtain high pulse energy and high pulse peak power, optimal positions of the spectral filter and the output coupler inside the cavity are proposed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 227-294 (1997).
    [CrossRef]
  2. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
    [CrossRef]
  3. F. Ö. Ilday, J. R. Buckley, H. Lim, and F. W. Wise, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett. 28, 1365-1367 (2003).
    [CrossRef] [PubMed]
  4. B. Ortaç, M. Plötner, T. Schreiber, H. J. LimpertH, and H. A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers,” Opt. Express 15, 15595-15602 (2007).
    [CrossRef]
  5. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140-148 (2008).
    [CrossRef]
  6. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408-2410 (2007).
    [CrossRef] [PubMed]
  7. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B 24, 1803-1806 (2007).
    [CrossRef]
  8. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  9. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode locking in the normal dispersive regime,” Opt. Lett. 33, 941-943 (2008).
    [CrossRef] [PubMed]
  10. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238-9243 (2006).
    [CrossRef] [PubMed]

2008 (3)

2007 (3)

2006 (1)

2003 (1)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 227-294 (1997).
[CrossRef]

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

Bale, B. G.

Buckley, J.

Buckley, J. R.

Chong, A.

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 227-294 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

Ilday, F. Ö.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 227-294 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

Isomäki, A.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 227-294 (1997).
[CrossRef]

Kutz, J. N.

Lim, H.

LimpertH, H. J.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 227-294 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

Okhotnikov, O. G.

Ortaç, B.

Plötner, M.

Renninger, W.

Renninger, W. H.

Schreiber, T.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 227-294 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

Tünnermann, H. A.

Wise, F. W.

Zhou, S.

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 227-294 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the ANDi fiber laser. OC, output coupler; SA, saturable absorber; SF, spectral filter, and its variable position marked as 1–5; SMF1, single-mode fiber before the gain fiber; SMF2, single-mode fiber after the gain fiber; gain fiber, Yb-doped single-mode fiber.

Fig. 2
Fig. 2

Laser output characteristics versus the intracavity positions and the bandwidth of the SF. (a) pulse energy, (b) pulse duration, (c) chirp, (d) dechirped pulse peak power. The different symbols correspond to the five cases of the SF intracavity location. p1–p5 represent the SF positions 1–5, respectively.

Fig. 3
Fig. 3

The spectrum evolution dynamics inside the cavity with the SF of 10 nm SFB in the five labeled positions [top panel (1)–(5)] and the corresponding output pulse spectrum shapes [bottom panel (1)–(5)] (linear scale: 0 = max ).

Fig. 4
Fig. 4

Schematic diagram of the ANDi fiber laser. OC, output coupler, and its variable position marked as 1–4; SA, saturable absorber; SF, spectral filter; SMF1, single-mode fiber before the gain fiber; SMF2, single-mode fiber after the gain fiber; gain fiber, Yb-doped single-mode fiber.

Fig. 5
Fig. 5

Laser performance versus the OCR and the location of the OC marked by 1–4 in Fig. 4. (a) pulse energy, (b) pulse duration, (c) chirp, (d) dechirped pulse peak power.

Fig. 6
Fig. 6

The intracavity pulse spectral evolution as a function of the OC location (top panel) and the corresponding output pulse spectra (bottom panel). (1), (2), (3), and (4) correspond to the OC position marked as 1–4 in Fig. 4 (linear scale: 0 max ).

Fig. 7
Fig. 7

Output pulse energies (left) and dechirped pulse peak power external to the cavity (right) when the positions of the OC and the SF are varied.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A Z = i 2 ( β 2 + i g T 2 2 ) 2 A T 2 + i γ | A | 2 A + 1 2 ( g α ) A ,
g = g 0 1 + E pulse E sat ,
T tr = 1 l 0 [ 1 + P P sat ] ,

Metrics