Abstract

Based on Kirchoff’s second law, we investigate the spectral-directional thermal emissivity of a photonic quantum well (PQW) structure with a zero-averaged-refractive-index (zero-n¯) gap coating on an absorbing substrate. It is shown that the thermal emission through tunneling modes having frequencies in the zero-n¯ gap is not only weakly dependent on the emission angle and polarization state but also insensitive to the unit-cell size scaling of the barrier photonic crystal. More importantly, the PQW structure promises the frequency-selective thermal emission for both TE and TM polarization states along a well-defined direction. This may result in designing thermal antennas.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. C. M. Bowden, J. P. Dowling, and H. O. Everitt, “Development and applications of materials exhibiting photonic band gaps: introduction,” J. Opt. Soc. Am. B 10, 280 (1993).
  4. S. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer, 2002).
  5. B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).
    [CrossRef]
  6. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
    [CrossRef]
  7. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736-4746 (1999).
    [CrossRef]
  8. S.-Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
    [CrossRef]
  9. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-513 (1968).
    [CrossRef]
  10. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
    [CrossRef] [PubMed]
  11. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
    [CrossRef]
  12. A. Battula and S. C. Chen, “Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance,” Phys. Rev. B 74, 245407 (2006).
    [CrossRef]
  13. P. Ben-Abdallah and B. Ni, “Single-defect Bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).
    [CrossRef]
  14. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
    [CrossRef]
  15. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
    [CrossRef]
  16. M. Maksimović and Z. Jakšić, “Modification of thermal radiation by periodical structures containing negative refractive index metamaterials,” Phys. Lett. A 342, 497-503 (2005).
    [CrossRef]
  17. M. Maksimović and Z. Jakšić, “Emittance and absorptance tailoring by negative refractive index metamaterial based Cantor multilayers,” J. Opt. A, Pure Appl. Opt. 8, 355-362 (2006).
    [CrossRef]
  18. F. F. de Medeiros, E. L. Albuquerque, M. S. Vasconcelos, and P. W. Mauriz, “Thermal radiation in quasiperiodic photonic crystals with negative refractive index,” J. Phys. Condens. Matter 19, 496212 (2007).
    [CrossRef]
  19. J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084-2086 (1998).
    [CrossRef]
  20. F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
    [CrossRef]
  21. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
    [CrossRef]
  22. K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
    [CrossRef]
  23. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  24. P. Pigeat, D. Rouzel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B 57, 9293-9300 (1998).
    [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  26. M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
    [CrossRef]

2007

F. F. de Medeiros, E. L. Albuquerque, M. S. Vasconcelos, and P. W. Mauriz, “Thermal radiation in quasiperiodic photonic crystals with negative refractive index,” J. Phys. Condens. Matter 19, 496212 (2007).
[CrossRef]

2006

M. Maksimović and Z. Jakšić, “Emittance and absorptance tailoring by negative refractive index metamaterial based Cantor multilayers,” J. Opt. A, Pure Appl. Opt. 8, 355-362 (2006).
[CrossRef]

A. Battula and S. C. Chen, “Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance,” Phys. Rev. B 74, 245407 (2006).
[CrossRef]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

2005

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

M. Maksimović and Z. Jakšić, “Modification of thermal radiation by periodical structures containing negative refractive index metamaterials,” Phys. Lett. A 342, 497-503 (2005).
[CrossRef]

P. Ben-Abdallah and B. Ni, “Single-defect Bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

2004

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[CrossRef]

2003

S.-Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
[CrossRef]

2000

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

1999

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736-4746 (1999).
[CrossRef]

1998

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084-2086 (1998).
[CrossRef]

P. Pigeat, D. Rouzel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B 57, 9293-9300 (1998).
[CrossRef]

1996

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1993

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-513 (1968).
[CrossRef]

Albrand, G.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Albuquerque, E. L.

F. F. de Medeiros, E. L. Albuquerque, M. S. Vasconcelos, and P. W. Mauriz, “Thermal radiation in quasiperiodic photonic crystals with negative refractive index,” J. Phys. Condens. Matter 19, 496212 (2007).
[CrossRef]

Battula, A.

A. Battula and S. C. Chen, “Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance,” Phys. Rev. B 74, 245407 (2006).
[CrossRef]

Ben-Abdallah, P.

P. Ben-Abdallah and B. Ni, “Single-defect Bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

Bertolotti, M.

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

Bloemer, M. J.

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Bowden, C. M.

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

C. M. Bowden, J. P. Dowling, and H. O. Everitt, “Development and applications of materials exhibiting photonic band gaps: introduction,” J. Opt. Soc. Am. B 10, 280 (1993).

Celanovic, I.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Centini, M.

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

Chan, C. T.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

Chan, D. L. C.

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

Chen, G.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[CrossRef]

Chen, H.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
[CrossRef]

Chen, S. C.

A. Battula and S. C. Chen, “Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance,” Phys. Rev. B 74, 245407 (2006).
[CrossRef]

Cornelius, C. M.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736-4746 (1999).
[CrossRef]

D'Aguanno, G.

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

de Medeiros, F. F.

F. F. de Medeiros, E. L. Albuquerque, M. S. Vasconcelos, and P. W. Mauriz, “Thermal radiation in quasiperiodic photonic crystals with negative refractive index,” J. Phys. Condens. Matter 19, 496212 (2007).
[CrossRef]

Dowling, J. P.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736-4746 (1999).
[CrossRef]

C. M. Bowden, J. P. Dowling, and H. O. Everitt, “Development and applications of materials exhibiting photonic band gaps: introduction,” J. Opt. Soc. Am. B 10, 280 (1993).

Elalmy, Z.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Enoch, S.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Escoubas, L.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Everitt, H. O.

Fleming, J. G.

S.-Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Fu, C. J.

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Jakšic, Z.

M. Maksimović and Z. Jakšić, “Emittance and absorptance tailoring by negative refractive index metamaterial based Cantor multilayers,” J. Opt. A, Pure Appl. Opt. 8, 355-362 (2006).
[CrossRef]

M. Maksimović and Z. Jakšić, “Modification of thermal radiation by periodical structures containing negative refractive index metamaterials,” Phys. Lett. A 342, 497-503 (2005).
[CrossRef]

Jiang, H. T.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
[CrossRef]

Joannopoulos, J. D.

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

S. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer, 2002).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, S.

S. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer, 2002).

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Lee, B. J.

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).
[CrossRef]

Lemarquis, F.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Li, C. L.

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Li, H. Q.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
[CrossRef]

Li, J.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

Lin, S.-Y.

S.-Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Maksimovic, M.

M. Maksimović and Z. Jakšić, “Emittance and absorptance tailoring by negative refractive index metamaterial based Cantor multilayers,” J. Opt. A, Pure Appl. Opt. 8, 355-362 (2006).
[CrossRef]

M. Maksimović and Z. Jakšić, “Modification of thermal radiation by periodical structures containing negative refractive index metamaterials,” Phys. Lett. A 342, 497-503 (2005).
[CrossRef]

Mauriz, P. W.

F. F. de Medeiros, E. L. Albuquerque, M. S. Vasconcelos, and P. W. Mauriz, “Thermal radiation in quasiperiodic photonic crystals with negative refractive index,” J. Phys. Condens. Matter 19, 496212 (2007).
[CrossRef]

Moreno, J.

S.-Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[CrossRef]

Nefedov, I.

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

Ni, B.

P. Ben-Abdallah and B. Ni, “Single-defect Bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Pigeat, P.

P. Pigeat, D. Rouzel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B 57, 9293-9300 (1998).
[CrossRef]

Qiao, F.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

Rouzel, D.

P. Pigeat, D. Rouzel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B 57, 9293-9300 (1998).
[CrossRef]

Scalora, M.

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

She, W. L.

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Sheng, P.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

Sibilia, C.

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

Simon, J.-J.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Soljacic, M.

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Torchio, P.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Vasconcelos, M. S.

F. F. de Medeiros, E. L. Albuquerque, M. S. Vasconcelos, and P. W. Mauriz, “Thermal radiation in quasiperiodic photonic crystals with negative refractive index,” J. Phys. Condens. Matter 19, 496212 (2007).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-513 (1968).
[CrossRef]

Wan, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084-2086 (1998).
[CrossRef]

Weber, B.

P. Pigeat, D. Rouzel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B 57, 9293-9300 (1998).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Xu, K. Y.

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Zhang, C.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084-2086 (1998).
[CrossRef]

Zhang, Y. W.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
[CrossRef]

Zhang, Z. M.

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).
[CrossRef]

Zheng, X. G.

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

Zhou, L.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

Zhu, S. Y.

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
[CrossRef]

Zi, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084-2086 (1998).
[CrossRef]

Appl. Phys. Lett.

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).
[CrossRef]

S.-Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73, 2084-2086 (1998).
[CrossRef]

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698-3700 (2000).
[CrossRef]

H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386-5388 (2003).
[CrossRef]

J. Appl. Phys.

P. Ben-Abdallah and B. Ni, “Single-defect Bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. Maksimović and Z. Jakšić, “Emittance and absorptance tailoring by negative refractive index metamaterial based Cantor multilayers,” J. Opt. A, Pure Appl. Opt. 8, 355-362 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

F. F. de Medeiros, E. L. Albuquerque, M. S. Vasconcelos, and P. W. Mauriz, “Thermal radiation in quasiperiodic photonic crystals with negative refractive index,” J. Phys. Condens. Matter 19, 496212 (2007).
[CrossRef]

Phys. Lett. A

M. Maksimović and Z. Jakšić, “Modification of thermal radiation by periodical structures containing negative refractive index metamaterials,” Phys. Lett. A 342, 497-503 (2005).
[CrossRef]

Phys. Rev. A

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736-4746 (1999).
[CrossRef]

Phys. Rev. B

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70, 125101 (2004).
[CrossRef]

A. Battula and S. C. Chen, “Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance,” Phys. Rev. B 74, 245407 (2006).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

P. Pigeat, D. Rouzel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B 57, 9293-9300 (1998).
[CrossRef]

Phys. Rev. E

K. Y. Xu, X. G. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).
[CrossRef]

M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891-4898 (1999).
[CrossRef]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

Phys. Rev. Lett.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-513 (1968).
[CrossRef]

Other

S. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer, 2002).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometrical schematic of a PQW structure. The layer A denotes negative index material. The layers B, C, and D denote positive index materials while the thick layer S is an absorbing substrate.

Fig. 2
Fig. 2

Calculated photonic band structures for the PC ( A B ) m (solid curves) and PC ( C D ) n (dotted curves). The parameter d is the lattice constant.

Fig. 3
Fig. 3

Spectral emissivity of the structure ( A B ) 5 ( C D ) 1 ( A B ) 5 S at a normal emission angle.

Fig. 4
Fig. 4

Spectral emissivity of the structure ( A B ) 5 ( C D ) 1 ( A B ) 5 S (a) for the TE wave when the emission angle θ = 0 ° , 30°, and 56°, (b) for the TM wave when the emission angle θ = 0 ° , 30° and 56°, and (c) for TE and TM waves at the same emission angle θ = 30 ° .

Fig. 5
Fig. 5

Angular emissivity spectrum of the tunneling mode at frequency f = 0.749 GHz for the structure ( A B ) 5 ( C D ) 1 ( A B ) 5 S (a) for the TE wave and (b) for the TM wave.

Fig. 6
Fig. 6

Spectral emissivity of the structure ( A B ) 5 ( C D ) 1 ( A B ) 5 S with different unit-cell size scaling factors of the barrier PC (a) at a normal emission angle, (b) at a 30° emission angle for the TE wave, and (c) at 30° emission angle for the TM wave. The unit-cell size of the barrier PC is scaled by 90% and 75%, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε A ( ω ) = ε a ω ep 2 ω 2 + i ω γ e ,
μ A ( ω ) = μ a ω mp 2 ω 2 + i ω γ m ,
M j ( Δ z , ω ) = ( cos ( k j z Δ z ) μ j ε j μ j sin 2 θ sin ( k j z Δ z ) ε j μ j sin 2 θ μ j sin ( k j z Δ z ) cos ( k j z Δ z ) ) ,
T ( ω ) = 2 cos θ ( x 11 + x 22 ) cos θ + i ( x 12 cos 2 θ x 21 ) 2 ,
R ( ω ) = ( x 11 x 22 ) cos θ + i ( x 12 cos 2 θ + x 21 ) ( x 11 + x 22 ) cos θ + i ( x 12 cos 2 θ x 21 ) 2 ,
X N ( ω ) = j = 1 N M j ( d j , ω ) = ( x 11 ( ω ) x 12 ( ω ) x 21 ( ω ) x 22 ( ω ) ) .
cos [ k z ( d A + d B ) ] = cos ( k A z d A ) cos ( k B z d B ) 1 2 ( p A p B + p B p A ) sin ( k A z d A ) sin ( k B z d B ) ,
p j = ( ε j μ j ) 1 sin 2 θ ( ε j μ j ) ( j = A , B )
p j = ( μ j ε j ) 1 sin 2 θ ( ε j μ j ) ( j = A , B )

Metrics