Abstract

Cr3+ doped colquiriites are promising solid-state gain media for developing inexpensive and highly efficient tunable continuous-wave (cw) and femtosecond lasers. Among Cr3+ doped colquiriites, Cr3+:LiCAF has superior thermal properties enabling high-power operation with standard laser cavities. In this study we present detailed laser experiments with Cr3+:LiCAF, which achieve laser performance approaching that of the much more expensive Ti:sapphire laser technology. Inexpensive, new, multimode (1.5W) and single-mode (150mW) diode lasers were used as pump sources. With multimode diode pumping, cw output powers exceeding 1W and mode-locked pulse energies as high as 2.8nJ were obtained. Using single-mode diode pumping, up to 280mW of cw output power with 54% slope efficiency and continuous tuning between 765 and 865nm were demonstrated. In cw mode-locking, 72fs, 1.4nJ pulses were obtained, and an electrical-to-optical conversion efficiency of 7.8% was demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAIF6:Cr3+,” J. Appl. Phys. 66, 1051-1056 (1989).
    [CrossRef]
  2. S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Taasano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt. 33, 5526-5536 (1994).
    [CrossRef] [PubMed]
  3. S. A. Payne, L. L. Chase, and G. D. Wilke, “Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+: and LiCaAlF6:Cr3+,” J. Lumin. 44, 167-176 (1989).
    [CrossRef]
  4. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612-2618 (1992).
    [CrossRef]
  5. B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584-1586 (1992).
    [CrossRef] [PubMed]
  6. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+--a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243-2252 (1988).
    [CrossRef]
  7. R. Scheps, J. F. Myers, and S. A. Payne, “Cw and Q-switched operation of a low threshold Cr+3:LiCaAlF6 laser,” IEEE Photon. Technol. Lett. 2, 626-628 (1990).
    [CrossRef]
  8. S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259-S268(1990).
    [CrossRef]
  9. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820-822 (1991).
    [CrossRef] [PubMed]
  10. R. Scheps, “Cr-LiCaAlF6 laser pumped by visible laser diodes,” IEEE J. Quantum Electron. 27, 1968-1970 (1991).
    [CrossRef]
  11. S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992).
    [CrossRef]
  12. R. Scheps, “Cr-doped solid-state lasers pumped by visible laser diodes,” Opt. Mater. 1, 1-9 (1992).
    [CrossRef]
  13. R. Scheps, “Laser-diode-pumped Cr:LiSrGaF6 laser,” IEEE Photon. Technol. Lett. 4, 548-550 (1992).
    [CrossRef]
  14. G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr+3:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639-1641 (1997).
    [CrossRef]
  15. P. Wagenblast, R. Ell, U. Morgner, F. Grawert, and F. X. Kärtner, “Diode-pumped 10-fsCr+3:LiCAF laser,” Opt. Lett. 28, 1713-1715 (2003).
    [CrossRef] [PubMed]
  16. P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G.Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr+3:LiCAF laser oscillator using third-order dispersion-compensating double-chirped mirrors,” Opt. Lett. 27, 1726-1729 (2002).
    [CrossRef]
  17. S. Uemeura and K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780-782 (1999).
    [CrossRef]
  18. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716-1718 (1997).
    [CrossRef]
  19. S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys., Part 1 39, 3472-3473 (2000).
    [CrossRef]
  20. U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Highly efficient, low-cost femtosecond Cr+3:LiCAF laser pumped by single-mode diodes,” Opt. Lett. 33, 590-592 (2008).
    [CrossRef] [PubMed]
  21. A. Isemann and C. Fallnich, “High-power colquiriite lasers with high slope efficiencies pumped by broad-area laser diodes,” Opt. Express 11, 259-264 (2003).
    [CrossRef] [PubMed]
  22. A. Sanchez, R. E. Fahey, A. J. Strauss, and R. L. Aggarwal, “Room-temperature continuous-wave operation of a Ti-Al2O3 laser,” Opt. Lett. 11, 363-364 (1986).
    [CrossRef] [PubMed]
  23. P. F. Moulton, “Spectroscopic and laser characteristics of Ti-Al2O3,” J. Opt. Soc. Am. B 3, 125-133 (1986).
    [CrossRef]
  24. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 5 fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373-375 (2001).
    [CrossRef]
  25. L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (CLEO), vol. 14, of 1987 OSA Technical Digest Series (Optical Society of America, 1987), pp. 296-298.
  26. A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97-166 (2005).
    [CrossRef]
  27. D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996).
    [CrossRef]
  28. J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 8-14 (2005).
    [CrossRef] [PubMed]
  29. E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and Its Applications, F.X.Kärtner, ed. (Springer-Verlag, 2004), pp. 3-71.
  30. F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153-164 (2007).
    [CrossRef]
  31. J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002).
    [CrossRef]
  32. S. Uemura and K. Torizuka, “Development of a diode-pumped Kerr-lens mode-locked Cr. LiSAF Laser,” IEEE J. Quantum Electron. 39, 68-73 (2003).
    [CrossRef]
  33. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002).
    [CrossRef]
  34. P. A. Beaud, M. Richardson, and E. J. Miesak, “Multi-terawatt femtosecond Cr:LiSAF laser,” IEEE J. Quantum Electron. 31, 317-325 (1995).
    [CrossRef]
  35. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
    [CrossRef]
  36. R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hansch, P. Russbuldt, K. Gabel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376-1378 (2001).
    [CrossRef]
  37. H. Tsuchida, “Timing-jitter reduction of a mode-locked Cr:LiSAF laser by simultaneous control of cavity length and pump power,” Opt. Lett. 25, 1475-1477 (2000).
    [CrossRef]
  38. R. Mellish, N. P. Barry, S. C. W. Hyde, R. Jones, P. M. W. French, J. R. Taylor, C. J. van der Poel, and A. Valster, “Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier,” Opt. Lett. 20, 2312-2314 (1995).
    [CrossRef] [PubMed]
  39. P. Beaud, M. Richardson, E. J. Miesak, and B. H. T. Chai, “8-TW90-fs Cr:LiSaF laser,” Opt. Lett. 18, 1550-1552 (1993).
    [CrossRef] [PubMed]
  40. T. A. Samtleben and E. Hulliger, “LiCaAlF6 and LiSrAlF6: tunable solid state laser host materials,” Opt. Lasers Eng. 43, 251-262 (2005).
    [CrossRef]
  41. R. E. Samad, S. L. Baldochi, G. E. C. Nogueira, and N. D. Vieira, “30 WCr:LiSrAlF6 flashlamp-pumped pulsed laser,” Opt. Lett. 32, 50-52 (2007).
    [CrossRef]
  42. D. Kopf, U. Keller, M. A. Emanuel, R. J. Beach, and J. A. Skidmore, “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array,” Opt. Lett. 22, 99-101 (1997).
    [PubMed]
  43. F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
    [CrossRef]
  44. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997).
    [CrossRef]
  45. Y. Nagumo, N. Taguchi, and H. Inaba, “Widely tunable continuous-wave Cr3+:LiSrAlF6 ring laser from 800to936 nm,” Appl. Opt. 37, 4929-4932 (1998).
    [CrossRef]
  46. R. Knappe, K. J. Boller, and R. Wallenstein, “Single-mode continuous-wave Cr3+:LiSaF ring laser from 800to936 nm ring laser-pumped by an injection-locked 670-nm broad-area diode-laser,” Opt. Lett. 20, 1988-1990 (1995).
    [CrossRef] [PubMed]
  47. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
    [CrossRef]
  48. A. Miller, P. LiKamWa, B. H. T. Chai, and E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSAF6,” Opt. Lett. 17, 195-197 (1992).
    [CrossRef] [PubMed]
  49. F. Balembois, P. Georges, and A. Brun, “Quasi-continuous-wave and actively mode-locked diode-pumped Cr3+:LiSrAlF6 laser,” Opt. Lett. 18, 1730-1732 (1993).
    [CrossRef] [PubMed]
  50. P. M. W. French, R. Mellish, and J. R. Taylor, “Mode-locked all-solid-state diode-pumped Cr:LiSAF laser,” Opt. Lett. 18, 1934-1936 (1993).
    [CrossRef] [PubMed]
  51. N. H. Rizvi, P. M. W. French, and J. R. Taylor, “Generation of 33-fs pulses from a passively mode-locked Cr3+:LiSrAlF6 laser,” Opt. Lett. 17, 1605-1607 (1992).
    [CrossRef] [PubMed]
  52. S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69, 1538-1540 (1996).
    [CrossRef]
  53. J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998).
    [CrossRef]
  54. R. P. Prasankumar, Y. Hirakawa, A. M. J. Kowalevicz, F. X. Kærtner, J. G. Fujitimo, and W. H. Knox, “An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers,” Opt. Express 11, 1265-1269 (2003).
    [CrossRef] [PubMed]
  55. X. Guo-Qiang, W. Tao, Z. He-Yuan, and Q. Lie-Jia, “Diode-pumped tunable laser with dual Cr:LiSAF rods,” Chin. Phys. 15, 547-551 (2006).
    [CrossRef]
  56. D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352-358 (2005).
    [CrossRef]
  57. G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+:LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221-1227 (1999).
    [CrossRef]
  58. M. Stalder, B. H. T. Chai, and M. Bass, “Flashlamp pumped Cr:LiSrAIF6 laser,” Appl. Phys. Lett. 58, 216-218 (1991).
    [CrossRef]
  59. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271-2273 (1992).
    [CrossRef]
  60. V. Pilla, T. Catunda, S. M. Lima, A. N. Medina,M. L. Baesso, H. P. Jenssen, and A. Cassanho, “Thermal quenching of the fluorescence quantum efficiency in colquiriite crystals measured by thermal lens spectrometry,” J. Opt. Soc. Am. B 21, 1784-1791 (2004).
    [CrossRef]
  61. S. Uemura and K. Miyazaki, “Thermal chracteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312-4315 (1997).
    [CrossRef]
  62. D. Kopf, J. A. Derau, U. Keller, G. L. Bona, and P. Roentgen, “400-Mw continuous-wave diode-pumpedCr:LiSAF laser-based on a power-scalable concept,” Opt. Lett. 20, 1782-1784 (1995).
    [CrossRef] [PubMed]
  63. K. M. Gabel, P. Russbuldt, R. Lebert, and A. Valster, “Diode pumped Cr+3:LiCAF fs-laser,” Opt. Commun. 157, 327-334 (1998).
    [CrossRef]
  64. P. LiKamWa, B. H. T. Chai, and A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438-1440 (1992).
    [CrossRef] [PubMed]
  65. U. Demirbas, A. Sennaroglu, A. Benedick, A. Siddiqui, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped, high-average power femtosecond Cr+3:LiCAF laser,” Opt. Lett. 32, 3309-3311 (2007).
    [CrossRef] [PubMed]
  66. J. K. Jabczynski, W. Zendzian, Z. Mierczyk, and Z. Frukacz, “Chromium-doped LiCAF laser passively Q-switched with a V3+:YAG crystal,” Appl. Opt. 40, 6638-6645 (2001).
    [CrossRef]
  67. Y.-K. Kuo, M.-F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657-663 (1995).
    [CrossRef]
  68. P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF andCr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259-1266 (1994).
    [CrossRef]
  69. Y. K. Kuo, Y. Yang, and M. Birnbaum, “Cr4+Gd3Sc2Ga3O12 passive Q-switch for the Cr3+LiCaAlF6 laser,” Appl. Phys. Lett. 64, 2329-2331 (1994).
    [CrossRef]
  70. Y. C. Wang, C. E. Huang, L. S. Chen, and Z. Y. Fang, “Crystal growth of Cr3+:LiCaAlF6 by Bridgman technique,” J. Cryst. Growth 167, 176-179 (1996).
    [CrossRef]
  71. A. Isemann, P. Wessels, and C. Fallnich, “Directly diode-pumped colquiriite regenerative amplifiers,” Opt. Commun. 260, 211-222 (2006).
    [CrossRef]
  72. A. Isemann, H. Hundertmark, and C. Fallnich, “Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,” Appl. Phys. B 74, 299-306 (2002).
    [CrossRef]
  73. J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991).
    [CrossRef]
  74. L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453-502 (1993).
    [CrossRef]
  75. D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145-152 (1999).
    [CrossRef]
  76. D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409-416 (1998).
    [CrossRef]
  77. D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr:LiCaAlF6 and Cr:LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683-693 (2000).
    [CrossRef]
  78. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910-919 (1998).
    [CrossRef]
  79. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970-977 (1991).
    [CrossRef]
  80. A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18, 1578-1586 (2001).
    [CrossRef]
  81. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
    [CrossRef]
  82. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
    [CrossRef]
  83. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277-278 (1966).
    [CrossRef]
  84. J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874-881 (1975).
    [CrossRef]
  85. S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.
  86. H. W. H. Lee, S. A. Payne, and L. L. Chase, “Excited-state absorption of Cr+3 in LiCaAlF6: effects of asymmetric distortions and intensity selection rules,” Phys. Rev. B 39, 8907-8914 (1989).
    [CrossRef]
  87. P. Beaud, Y.-F. Chen, B. H. T. Chai, and M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064-1066 (1992).
    [CrossRef] [PubMed]
  88. B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158-165 (1996).
    [CrossRef]
  89. B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6:Cr3+ oscillator,” Opt. Commun. 149, 301-306 (1998).
    [CrossRef]
  90. M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium-doped active material,” Opt. Commun. 191, 305-314 (2001).
    [CrossRef]
  91. N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).
  92. N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531-538 (2004).
    [CrossRef]
  93. N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics,” Appl. Opt. 43, 5047-5059 (2004).
    [CrossRef] [PubMed]
  94. V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28, 239-241 (2003).
    [CrossRef] [PubMed]
  95. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
    [CrossRef]
  96. F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387-389 (1997).
    [CrossRef] [PubMed]
  97. H. S. Wang, P. L. K. Wa, J. L. Lefaucheur, B. H. T. Chai, and A. Miller, “Cw and self-mode-locking performance of a red pumped Cr:LiSr0.8Ca0.2AlF6 laser,” Opt. Commun. 110, 679-688 (1994).
    [CrossRef]
  98. S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
    [CrossRef] [PubMed]
  99. S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004).
    [CrossRef]
  100. S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5.
    [PubMed]
  101. U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm,” Opt. Lett. 31, 2293-2295 (2006).
    [CrossRef] [PubMed]
  102. A. Sennaroglu and J. G. Fujimoto, “Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers,” Opt. Express 11, 1106-1113 (2003).
    [CrossRef] [PubMed]
  103. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46-56 (1999).
    [CrossRef]
  104. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024-2036 (1995).
    [CrossRef]
  105. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831-838 (2003).
    [CrossRef] [PubMed]

2008

2007

2006

A. Isemann, P. Wessels, and C. Fallnich, “Directly diode-pumped colquiriite regenerative amplifiers,” Opt. Commun. 260, 211-222 (2006).
[CrossRef]

X. Guo-Qiang, W. Tao, Z. He-Yuan, and Q. Lie-Jia, “Diode-pumped tunable laser with dual Cr:LiSAF rods,” Chin. Phys. 15, 547-551 (2006).
[CrossRef]

U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm,” Opt. Lett. 31, 2293-2295 (2006).
[CrossRef] [PubMed]

2005

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352-358 (2005).
[CrossRef]

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 8-14 (2005).
[CrossRef] [PubMed]

T. A. Samtleben and E. Hulliger, “LiCaAlF6 and LiSrAlF6: tunable solid state laser host materials,” Opt. Lasers Eng. 43, 251-262 (2005).
[CrossRef]

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97-166 (2005).
[CrossRef]

2004

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

V. Pilla, T. Catunda, S. M. Lima, A. N. Medina,M. L. Baesso, H. P. Jenssen, and A. Cassanho, “Thermal quenching of the fluorescence quantum efficiency in colquiriite crystals measured by thermal lens spectrometry,” J. Opt. Soc. Am. B 21, 1784-1791 (2004).
[CrossRef]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
[CrossRef] [PubMed]

S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531-538 (2004).
[CrossRef]

N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics,” Appl. Opt. 43, 5047-5059 (2004).
[CrossRef] [PubMed]

2003

2002

P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G.Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr+3:LiCAF laser oscillator using third-order dispersion-compensating double-chirped mirrors,” Opt. Lett. 27, 1726-1729 (2002).
[CrossRef]

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002).
[CrossRef]

A. Isemann, H. Hundertmark, and C. Fallnich, “Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,” Appl. Phys. B 74, 299-306 (2002).
[CrossRef]

2001

2000

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr:LiCaAlF6 and Cr:LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683-693 (2000).
[CrossRef]

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys., Part 1 39, 3472-3473 (2000).
[CrossRef]

H. Tsuchida, “Timing-jitter reduction of a mode-locked Cr:LiSAF laser by simultaneous control of cavity length and pump power,” Opt. Lett. 25, 1475-1477 (2000).
[CrossRef]

1999

S. Uemeura and K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780-782 (1999).
[CrossRef]

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+:LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221-1227 (1999).
[CrossRef]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145-152 (1999).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46-56 (1999).
[CrossRef]

1998

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6:Cr3+ oscillator,” Opt. Commun. 149, 301-306 (1998).
[CrossRef]

D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409-416 (1998).
[CrossRef]

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910-919 (1998).
[CrossRef]

K. M. Gabel, P. Russbuldt, R. Lebert, and A. Valster, “Diode pumped Cr+3:LiCAF fs-laser,” Opt. Commun. 157, 327-334 (1998).
[CrossRef]

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998).
[CrossRef]

Y. Nagumo, N. Taguchi, and H. Inaba, “Widely tunable continuous-wave Cr3+:LiSrAlF6 ring laser from 800to936 nm,” Appl. Opt. 37, 4929-4932 (1998).
[CrossRef]

1997

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
[CrossRef]

D. Kopf, U. Keller, M. A. Emanuel, R. J. Beach, and J. A. Skidmore, “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array,” Opt. Lett. 22, 99-101 (1997).
[PubMed]

F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997).
[CrossRef]

S. Uemura and K. Miyazaki, “Thermal chracteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312-4315 (1997).
[CrossRef]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716-1718 (1997).
[CrossRef]

G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr+3:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639-1641 (1997).
[CrossRef]

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387-389 (1997).
[CrossRef] [PubMed]

1996

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158-165 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996).
[CrossRef]

Y. C. Wang, C. E. Huang, L. S. Chen, and Z. Y. Fang, “Crystal growth of Cr3+:LiCaAlF6 by Bridgman technique,” J. Cryst. Growth 167, 176-179 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69, 1538-1540 (1996).
[CrossRef]

1995

1994

H. S. Wang, P. L. K. Wa, J. L. Lefaucheur, B. H. T. Chai, and A. Miller, “Cw and self-mode-locking performance of a red pumped Cr:LiSr0.8Ca0.2AlF6 laser,” Opt. Commun. 110, 679-688 (1994).
[CrossRef]

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Taasano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt. 33, 5526-5536 (1994).
[CrossRef] [PubMed]

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF andCr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259-1266 (1994).
[CrossRef]

Y. K. Kuo, Y. Yang, and M. Birnbaum, “Cr4+Gd3Sc2Ga3O12 passive Q-switch for the Cr3+LiCaAlF6 laser,” Appl. Phys. Lett. 64, 2329-2331 (1994).
[CrossRef]

1993

1992

P. Beaud, Y.-F. Chen, B. H. T. Chai, and M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064-1066 (1992).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584-1586 (1992).
[CrossRef] [PubMed]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992).
[CrossRef]

R. Scheps, “Cr-doped solid-state lasers pumped by visible laser diodes,” Opt. Mater. 1, 1-9 (1992).
[CrossRef]

R. Scheps, “Laser-diode-pumped Cr:LiSrGaF6 laser,” IEEE Photon. Technol. Lett. 4, 548-550 (1992).
[CrossRef]

N. H. Rizvi, P. M. W. French, and J. R. Taylor, “Generation of 33-fs pulses from a passively mode-locked Cr3+:LiSrAlF6 laser,” Opt. Lett. 17, 1605-1607 (1992).
[CrossRef] [PubMed]

A. Miller, P. LiKamWa, B. H. T. Chai, and E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSAF6,” Opt. Lett. 17, 195-197 (1992).
[CrossRef] [PubMed]

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271-2273 (1992).
[CrossRef]

P. LiKamWa, B. H. T. Chai, and A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438-1440 (1992).
[CrossRef] [PubMed]

1991

M. Stalder, B. H. T. Chai, and M. Bass, “Flashlamp pumped Cr:LiSrAIF6 laser,” Appl. Phys. Lett. 58, 216-218 (1991).
[CrossRef]

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991).
[CrossRef]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820-822 (1991).
[CrossRef] [PubMed]

R. Scheps, “Cr-LiCaAlF6 laser pumped by visible laser diodes,” IEEE J. Quantum Electron. 27, 1968-1970 (1991).
[CrossRef]

B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970-977 (1991).
[CrossRef]

1990

R. Scheps, J. F. Myers, and S. A. Payne, “Cw and Q-switched operation of a low threshold Cr+3:LiCaAlF6 laser,” IEEE Photon. Technol. Lett. 2, 626-628 (1990).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259-S268(1990).
[CrossRef]

1989

S. A. Payne, L. L. Chase, and G. D. Wilke, “Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+: and LiCaAlF6:Cr3+,” J. Lumin. 44, 167-176 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAIF6:Cr3+,” J. Appl. Phys. 66, 1051-1056 (1989).
[CrossRef]

H. W. H. Lee, S. A. Payne, and L. L. Chase, “Excited-state absorption of Cr+3 in LiCaAlF6: effects of asymmetric distortions and intensity selection rules,” Phys. Rev. B 39, 8907-8914 (1989).
[CrossRef]

1988

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+--a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243-2252 (1988).
[CrossRef]

1986

1975

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874-881 (1975).
[CrossRef]

1966

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Agate, B.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002).
[CrossRef]

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Aggarwal, R. L.

Ait-Ameur, K.

Ameur, K. A.

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium-doped active material,” Opt. Commun. 191, 305-314 (2001).
[CrossRef]

Angelow, G.

Armstrong, D.

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996).
[CrossRef]

Atherton, L. J.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453-502 (1993).
[CrossRef]

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991).
[CrossRef]

S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.

Baesso, M. L.

Baldochi, S. L.

Balembois, F.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153-164 (2007).
[CrossRef]

F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997).
[CrossRef]

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387-389 (1997).
[CrossRef] [PubMed]

F. Balembois, P. Georges, and A. Brun, “Quasi-continuous-wave and actively mode-locked diode-pumped Cr3+:LiSrAlF6 laser,” Opt. Lett. 18, 1730-1732 (1993).
[CrossRef] [PubMed]

Barry, N. P.

Barthelemy, A.

F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
[CrossRef]

Bass, M.

Battle, P.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Beach, R. J.

Beaud, P.

Beaud, P. A.

P. A. Beaud, M. Richardson, and E. J. Miesak, “Multi-terawatt femtosecond Cr:LiSAF laser,” IEEE J. Quantum Electron. 31, 317-325 (1995).
[CrossRef]

Benedick, A.

Birnbaum, M.

Y.-K. Kuo, M.-F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657-663 (1995).
[CrossRef]

Y. K. Kuo, Y. Yang, and M. Birnbaum, “Cr4+Gd3Sc2Ga3O12 passive Q-switch for the Cr3+LiCaAlF6 laser,” Appl. Phys. Lett. 64, 2329-2331 (1994).
[CrossRef]

Boller, K. J.

Bona, G. L.

Brandle, C. D.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453-502 (1993).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Brovelli, L. R.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024-2036 (1995).
[CrossRef]

Brown, C. T. A.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Brun, A.

F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997).
[CrossRef]

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387-389 (1997).
[CrossRef] [PubMed]

F. Balembois, P. Georges, and A. Brun, “Quasi-continuous-wave and actively mode-locked diode-pumped Cr3+:LiSrAlF6 laser,” Opt. Lett. 18, 1730-1732 (1993).
[CrossRef] [PubMed]

Burns, D.

Caird, J. A.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874-881 (1975).
[CrossRef]

S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.

Calasso, I.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024-2036 (1995).
[CrossRef]

Cassanho, A.

Catunda, T.

Centonze, V.

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996).
[CrossRef]

Chai, B. H. T.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Taasano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt. 33, 5526-5536 (1994).
[CrossRef] [PubMed]

H. S. Wang, P. L. K. Wa, J. L. Lefaucheur, B. H. T. Chai, and A. Miller, “Cw and self-mode-locking performance of a red pumped Cr:LiSr0.8Ca0.2AlF6 laser,” Opt. Commun. 110, 679-688 (1994).
[CrossRef]

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF andCr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259-1266 (1994).
[CrossRef]

P. Beaud, M. Richardson, E. J. Miesak, and B. H. T. Chai, “8-TW90-fs Cr:LiSaF laser,” Opt. Lett. 18, 1550-1552 (1993).
[CrossRef] [PubMed]

A. Miller, P. LiKamWa, B. H. T. Chai, and E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSAF6,” Opt. Lett. 17, 195-197 (1992).
[CrossRef] [PubMed]

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271-2273 (1992).
[CrossRef]

P. LiKamWa, B. H. T. Chai, and A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438-1440 (1992).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584-1586 (1992).
[CrossRef] [PubMed]

P. Beaud, Y.-F. Chen, B. H. T. Chai, and M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064-1066 (1992).
[CrossRef] [PubMed]

M. Stalder, B. H. T. Chai, and M. Bass, “Flashlamp pumped Cr:LiSrAIF6 laser,” Appl. Phys. Lett. 58, 216-218 (1991).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259-S268(1990).
[CrossRef]

Chase, L. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259-S268(1990).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAIF6:Cr3+,” J. Appl. Phys. 66, 1051-1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, and G. D. Wilke, “Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+: and LiCaAlF6:Cr3+,” J. Lumin. 44, 167-176 (1989).
[CrossRef]

H. W. H. Lee, S. A. Payne, and L. L. Chase, “Excited-state absorption of Cr+3 in LiCaAlF6: effects of asymmetric distortions and intensity selection rules,” Phys. Rev. B 39, 8907-8914 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+--a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243-2252 (1988).
[CrossRef]

S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.

Chen, L. S.

Y. C. Wang, C. E. Huang, L. S. Chen, and Z. Y. Fang, “Crystal growth of Cr3+:LiCaAlF6 by Bridgman technique,” J. Cryst. Growth 167, 176-179 (1996).
[CrossRef]

Chen, Y. F.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF andCr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259-1266 (1994).
[CrossRef]

Chen, Y.-F.

Chirico, G.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97-166 (2005).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Collini, M.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97-166 (2005).
[CrossRef]

Couderc, V.

F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
[CrossRef]

Cundiff, S. T.

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69, 1538-1540 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Davis, L. E.

DeLoach, L. D.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Taasano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt. 33, 5526-5536 (1994).
[CrossRef] [PubMed]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992).
[CrossRef]

Demirbas, U.

der Au, J. A.

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998).
[CrossRef]

derAu, J. A.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

D. Kopf, J. A. Derau, U. Keller, G. L. Bona, and P. Roentgen, “400-Mw continuous-wave diode-pumpedCr:LiSAF laser-based on a power-scalable concept,” Opt. Lett. 20, 1782-1784 (1995).
[CrossRef] [PubMed]

DeShazer, L. G.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874-881 (1975).
[CrossRef]

L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (CLEO), vol. 14, of 1987 OSA Technical Digest Series (Optical Society of America, 1987), pp. 296-298.

Deyoreo, J. J.

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991).
[CrossRef]

Diaspro, A.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97-166 (2005).
[CrossRef]

Doualan, J. L.

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531-538 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).

Druon, F.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153-164 (2007).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997).
[CrossRef]

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387-389 (1997).
[CrossRef] [PubMed]

Eichenholz, J. M.

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910-919 (1998).
[CrossRef]

Ell, R.

Emanuel, M. A.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
[CrossRef]

D. Kopf, U. Keller, M. A. Emanuel, R. J. Beach, and J. A. Skidmore, “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array,” Opt. Lett. 22, 99-101 (1997).
[PubMed]

Erchak, A. A.

S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004).
[CrossRef]

Fahey, R. E.

Falcoz, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997).
[CrossRef]

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387-389 (1997).
[CrossRef] [PubMed]

Fallnich, C.

A. Isemann, P. Wessels, and C. Fallnich, “Directly diode-pumped colquiriite regenerative amplifiers,” Opt. Commun. 260, 211-222 (2006).
[CrossRef]

A. Isemann and C. Fallnich, “High-power colquiriite lasers with high slope efficiencies pumped by broad-area laser diodes,” Opt. Express 11, 259-264 (2003).
[CrossRef] [PubMed]

A. Isemann, H. Hundertmark, and C. Fallnich, “Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,” Appl. Phys. B 74, 299-306 (2002).
[CrossRef]

Fang, Z. Y.

Y. C. Wang, C. E. Huang, L. S. Chen, and Z. Y. Fang, “Crystal growth of Cr3+:LiCaAlF6 by Bridgman technique,” J. Cryst. Growth 167, 176-179 (1996).
[CrossRef]

Ferguson, A. I.

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996).
[CrossRef]

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

French, P. M. W.

Fromager, M.

N. Passilly, M. Fromager, and K. Ait-Ameur, “Improvement of the self-Q-switching behavior of a Cr:LiSrAlF6 laser by use of binary diffractive optics,” Appl. Opt. 43, 5047-5059 (2004).
[CrossRef] [PubMed]

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531-538 (2004).
[CrossRef]

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium-doped active material,” Opt. Commun. 191, 305-314 (2001).
[CrossRef]

Frukacz, Z.

Fry, T.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Fujimoto, J. G.

Fujitimo, J. G.

Gabel, K.

Gabel, K. M.

K. M. Gabel, P. Russbuldt, R. Lebert, and A. Valster, “Diode pumped Cr+3:LiCAF fs-laser,” Opt. Commun. 157, 327-334 (1998).
[CrossRef]

Gaignet, M.

F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
[CrossRef]

Georges, P.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153-164 (2007).
[CrossRef]

F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997).
[CrossRef]

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387-389 (1997).
[CrossRef] [PubMed]

F. Balembois, P. Georges, and A. Brun, “Quasi-continuous-wave and actively mode-locked diode-pumped Cr3+:LiSrAlF6 laser,” Opt. Lett. 18, 1730-1732 (1993).
[CrossRef] [PubMed]

Girkin, J. M.

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 8-14 (2005).
[CrossRef] [PubMed]

Gopinath, J. T.

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
[CrossRef] [PubMed]

S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004).
[CrossRef]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5.
[PubMed]

Grawert, F.

Guo-Qiang, X.

X. Guo-Qiang, W. Tao, Z. He-Yuan, and Q. Lie-Jia, “Diode-pumped tunable laser with dual Cr:LiSAF rods,” Chin. Phys. 15, 547-551 (2006).
[CrossRef]

Hahnert, I.

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+:LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221-1227 (1999).
[CrossRef]

Hansch, T. W.

He-Yuan, Z.

X. Guo-Qiang, W. Tao, Z. He-Yuan, and Q. Lie-Jia, “Diode-pumped tunable laser with dual Cr:LiSAF rods,” Chin. Phys. 15, 547-551 (2006).
[CrossRef]

Hirakawa, Y.

Hirth, A.

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531-538 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6:Cr3+ oscillator,” Opt. Commun. 149, 301-306 (1998).
[CrossRef]

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158-165 (1996).
[CrossRef]

Holzwarth, R.

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Hönninger, C.

Hopkins, J. M.

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998).
[CrossRef]

G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr+3:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639-1641 (1997).
[CrossRef]

Huang, C. E.

Y. C. Wang, C. E. Huang, L. S. Chen, and Z. Y. Fang, “Crystal growth of Cr3+:LiCaAlF6 by Bridgman technique,” J. Cryst. Growth 167, 176-179 (1996).
[CrossRef]

Huang, M.-F.

Y.-K. Kuo, M.-F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657-663 (1995).
[CrossRef]

Hughes, R. S.

B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970-977 (1991).
[CrossRef]

S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.

Hulliger, E.

T. A. Samtleben and E. Hulliger, “LiCaAlF6 and LiSrAlF6: tunable solid state laser host materials,” Opt. Lasers Eng. 43, 251-262 (2005).
[CrossRef]

Hundertmark, H.

A. Isemann, H. Hundertmark, and C. Fallnich, “Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,” Appl. Phys. B 74, 299-306 (2002).
[CrossRef]

Hyde, S. C. W.

Inaba, H.

Ippen, E. P.

S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004).
[CrossRef]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
[CrossRef] [PubMed]

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 5 fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373-375 (2001).
[CrossRef]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5.
[PubMed]

Isemann, A.

A. Isemann, P. Wessels, and C. Fallnich, “Directly diode-pumped colquiriite regenerative amplifiers,” Opt. Commun. 260, 211-222 (2006).
[CrossRef]

A. Isemann and C. Fallnich, “High-power colquiriite lasers with high slope efficiencies pumped by broad-area laser diodes,” Opt. Express 11, 259-264 (2003).
[CrossRef] [PubMed]

A. Isemann, H. Hundertmark, and C. Fallnich, “Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,” Appl. Phys. B 74, 299-306 (2002).
[CrossRef]

Jabczynski, J. K.

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Jenssen, H. P.

Jones, R.

Jung, I. D.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Kærtner, F. X.

Kamp, M.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024-2036 (1995).
[CrossRef]

Kangas, K. W.

L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (CLEO), vol. 14, of 1987 OSA Technical Digest Series (Optical Society of America, 1987), pp. 296-298.

Kärtner, F. X.

U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Highly efficient, low-cost femtosecond Cr+3:LiCAF laser pumped by single-mode diodes,” Opt. Lett. 33, 590-592 (2008).
[CrossRef] [PubMed]

U. Demirbas, A. Sennaroglu, A. Benedick, A. Siddiqui, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped, high-average power femtosecond Cr+3:LiCAF laser,” Opt. Lett. 32, 3309-3311 (2007).
[CrossRef] [PubMed]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
[CrossRef] [PubMed]

P. Wagenblast, R. Ell, U. Morgner, F. Grawert, and F. X. Kärtner, “Diode-pumped 10-fsCr+3:LiCAF laser,” Opt. Lett. 28, 1713-1715 (2003).
[CrossRef] [PubMed]

P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G.Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr+3:LiCAF laser oscillator using third-order dispersion-compensating double-chirped mirrors,” Opt. Lett. 27, 1726-1729 (2002).
[CrossRef]

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 5 fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373-375 (2001).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024-2036 (1995).
[CrossRef]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5.
[PubMed]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002).
[CrossRef]

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46-56 (1999).
[CrossRef]

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998).
[CrossRef]

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
[CrossRef]

D. Kopf, U. Keller, M. A. Emanuel, R. J. Beach, and J. A. Skidmore, “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array,” Opt. Lett. 22, 99-101 (1997).
[PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024-2036 (1995).
[CrossRef]

D. Kopf, J. A. Derau, U. Keller, G. L. Bona, and P. Roentgen, “400-Mw continuous-wave diode-pumpedCr:LiSAF laser-based on a power-scalable concept,” Opt. Lett. 20, 1782-1784 (1995).
[CrossRef] [PubMed]

Kemp, A. J.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002).
[CrossRef]

Kennedy, G. T.

Kerboull, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997).
[CrossRef]

Klimm, D.

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352-358 (2005).
[CrossRef]

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr:LiCaAlF6 and Cr:LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683-693 (2000).
[CrossRef]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145-152 (1999).
[CrossRef]

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+:LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221-1227 (1999).
[CrossRef]

D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409-416 (1998).
[CrossRef]

Knappe, R.

Knight, J. C.

Knox, W. H.

R. P. Prasankumar, Y. Hirakawa, A. M. J. Kowalevicz, F. X. Kærtner, J. G. Fujitimo, and W. H. Knox, “An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers,” Opt. Express 11, 1265-1269 (2003).
[CrossRef] [PubMed]

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69, 1538-1540 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Kolodziejski, L. A.

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
[CrossRef] [PubMed]

S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004).
[CrossRef]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5.
[PubMed]

Kopf, D.

D. Kopf, U. Keller, M. A. Emanuel, R. J. Beach, and J. A. Skidmore, “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array,” Opt. Lett. 22, 99-101 (1997).
[PubMed]

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024-2036 (1995).
[CrossRef]

D. Kopf, J. A. Derau, U. Keller, G. L. Bona, and P. Roentgen, “400-Mw continuous-wave diode-pumpedCr:LiSAF laser-based on a power-scalable concept,” Opt. Lett. 20, 1782-1784 (1995).
[CrossRef] [PubMed]

Kowalevicz, A. M. J.

Koynov, K.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Taasano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt. 33, 5526-5536 (1994).
[CrossRef] [PubMed]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+--a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243-2252 (1988).
[CrossRef]

Kuo, Y. K.

Y. K. Kuo, Y. Yang, and M. Birnbaum, “Cr4+Gd3Sc2Ga3O12 passive Q-switch for the Cr3+LiCaAlF6 laser,” Appl. Phys. Lett. 64, 2329-2331 (1994).
[CrossRef]

Kuo, Y.-K.

Y.-K. Kuo, M.-F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657-663 (1995).
[CrossRef]

Kway, W. L.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Taasano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt. 33, 5526-5536 (1994).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAIF6:Cr3+,” J. Appl. Phys. 66, 1051-1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.

Lacayo, G.

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr:LiCaAlF6 and Cr:LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683-693 (2000).
[CrossRef]

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+:LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221-1227 (1999).
[CrossRef]

Laurell, F.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Lebert, R.

K. M. Gabel, P. Russbuldt, R. Lebert, and A. Valster, “Diode pumped Cr+3:LiCAF fs-laser,” Opt. Commun. 157, 327-334 (1998).
[CrossRef]

Lederer, M. J.

Lee, H. W. H.

H. W. H. Lee, S. A. Payne, and L. L. Chase, “Excited-state absorption of Cr+3 in LiCaAlF6: effects of asymmetric distortions and intensity selection rules,” Phys. Rev. B 39, 8907-8914 (1989).
[CrossRef]

Lefaucheur, J. L.

H. S. Wang, P. L. K. Wa, J. L. Lefaucheur, B. H. T. Chai, and A. Miller, “Cw and self-mode-locking performance of a red pumped Cr:LiSr0.8Ca0.2AlF6 laser,” Opt. Commun. 110, 679-688 (1994).
[CrossRef]

Lefaucheur, J.-L.

Lie-Jia, Q.

X. Guo-Qiang, W. Tao, Z. He-Yuan, and Q. Lie-Jia, “Diode-pumped tunable laser with dual Cr:LiSAF rods,” Chin. Phys. 15, 547-551 (2006).
[CrossRef]

LiKamWa, P.

Lima, S. M.

Long, M.

Louradour, F.

F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
[CrossRef]

LozaAlvarez, P.

Marion, J. E.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

McConnell, G.

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 8-14 (2005).
[CrossRef] [PubMed]

Medina, A. N.

Mellish, R.

Mierczyk, Z.

Miesak, E. J.

P. A. Beaud, M. Richardson, and E. J. Miesak, “Multi-terawatt femtosecond Cr:LiSAF laser,” IEEE J. Quantum Electron. 31, 317-325 (1995).
[CrossRef]

P. Beaud, M. Richardson, E. J. Miesak, and B. H. T. Chai, “8-TW90-fs Cr:LiSaF laser,” Opt. Lett. 18, 1550-1552 (1993).
[CrossRef] [PubMed]

Miller, A.

Miyazaki, K.

S. Uemura and K. Miyazaki, “Thermal chracteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312-4315 (1997).
[CrossRef]

Moncorge, R.

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531-538 (2004).
[CrossRef]

Morgner, U.

Morier-Genoud, F.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46-56 (1999).
[CrossRef]

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998).
[CrossRef]

Morris, R. C.

Moser, M.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46-56 (1999).
[CrossRef]

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
[CrossRef]

Moulton, P. F.

Myers, J. F.

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820-822 (1991).
[CrossRef] [PubMed]

R. Scheps, J. F. Myers, and S. A. Payne, “Cw and Q-switched operation of a low threshold Cr+3:LiCaAlF6 laser,” IEEE Photon. Technol. Lett. 2, 626-628 (1990).
[CrossRef]

Nagumo, Y.

Nella, J.

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874-881 (1975).
[CrossRef]

Neumann, W.

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+:LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221-1227 (1999).
[CrossRef]

Newkirk, H. W.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAIF6:Cr3+,” J. Appl. Phys. 66, 1051-1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+--a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243-2252 (1988).
[CrossRef]

Nogueira, G. E. C.

Noonan, E.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Paschotta, R.

Passilly, N.

Payne, S. A.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Taasano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt. 33, 5526-5536 (1994).
[CrossRef] [PubMed]

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453-502 (1993).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992).
[CrossRef]

B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970-977 (1991).
[CrossRef]

R. Scheps, J. F. Myers, and S. A. Payne, “Cw and Q-switched operation of a low threshold Cr+3:LiCaAlF6 laser,” IEEE Photon. Technol. Lett. 2, 626-628 (1990).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259-S268(1990).
[CrossRef]

S. A. Payne, L. L. Chase, and G. D. Wilke, “Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+: and LiCaAlF6:Cr3+,” J. Lumin. 44, 167-176 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAIF6:Cr3+,” J. Appl. Phys. 66, 1051-1056 (1989).
[CrossRef]

H. W. H. Lee, S. A. Payne, and L. L. Chase, “Excited-state absorption of Cr+3 in LiCaAlF6: effects of asymmetric distortions and intensity selection rules,” Phys. Rev. B 39, 8907-8914 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+--a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243-2252 (1988).
[CrossRef]

S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.

Petrich, G. S.

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
[CrossRef] [PubMed]

S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004).
[CrossRef]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5.
[PubMed]

Pilla, V.

Poprawe, R.

Prasankumar, R. P.

Quarles, G.

N. Passilly, M. Fromager, K. Ait-Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Experimental and theoretical investigation of a rapidly varying nonlinear lensing effect observed in a Cr3+:LiSAF laser,” J. Opt. Soc. Am. B 21, 531-538 (2004).
[CrossRef]

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).

Rafailov, E. U.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Reiche, P.

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352-358 (2005).
[CrossRef]

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr:LiCaAlF6 and Cr:LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683-693 (2000).
[CrossRef]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145-152 (1999).
[CrossRef]

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+:LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221-1227 (1999).
[CrossRef]

D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409-416 (1998).
[CrossRef]

Richardson, M.

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910-919 (1998).
[CrossRef]

P. A. Beaud, M. Richardson, and E. J. Miesak, “Multi-terawatt femtosecond Cr:LiSAF laser,” IEEE J. Quantum Electron. 31, 317-325 (1995).
[CrossRef]

P. Beaud, M. Richardson, E. J. Miesak, and B. H. T. Chai, “8-TW90-fs Cr:LiSaF laser,” Opt. Lett. 18, 1550-1552 (1993).
[CrossRef] [PubMed]

Richardson, M. C.

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF andCr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259-1266 (1994).
[CrossRef]

P. Beaud, Y.-F. Chen, B. H. T. Chai, and M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064-1066 (1992).
[CrossRef] [PubMed]

Rizvi, N. H.

Roberts, D. H.

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991).
[CrossRef]

Roberts, T.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Robertson, G.

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996).
[CrossRef]

Roentgen, P.

Rosenberg, A.

Russbuldt, P.

Russell, P. S. J.

Saltiel, S. M.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Samad, R. E.

Samtleben, T. A.

T. A. Samtleben and E. Hulliger, “LiCaAlF6 and LiSrAlF6: tunable solid state laser host materials,” Opt. Lasers Eng. 43, 251-262 (2005).
[CrossRef]

Sanchez, A.

Scheps, R.

R. Scheps, “Cr-doped solid-state lasers pumped by visible laser diodes,” Opt. Mater. 1, 1-9 (1992).
[CrossRef]

R. Scheps, “Laser-diode-pumped Cr:LiSrGaF6 laser,” IEEE Photon. Technol. Lett. 4, 548-550 (1992).
[CrossRef]

R. Scheps, “Cr-LiCaAlF6 laser pumped by visible laser diodes,” IEEE J. Quantum Electron. 27, 1968-1970 (1991).
[CrossRef]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820-822 (1991).
[CrossRef] [PubMed]

R. Scheps, J. F. Myers, and S. A. Payne, “Cw and Q-switched operation of a low threshold Cr+3:LiCaAlF6 laser,” IEEE Photon. Technol. Lett. 2, 626-628 (1990).
[CrossRef]

Scheuer, V.

Sennaroglu, A.

Serreze, H. B.

Shen, H. M.

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
[CrossRef] [PubMed]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5.
[PubMed]

Shinn, M. D.

S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.

Sibbett, W.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998).
[CrossRef]

G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr+3:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639-1641 (1997).
[CrossRef]

Siddiqui, A.

Skidmore, J. A.

D. Kopf, U. Keller, M. A. Emanuel, R. J. Beach, and J. A. Skidmore, “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array,” Opt. Lett. 22, 99-101 (1997).
[PubMed]

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
[CrossRef]

Smith, L. K.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Taasano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAIF6 crystals for laser operation,” Appl. Opt. 33, 5526-5536 (1994).
[CrossRef] [PubMed]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259-S268(1990).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAIF6:Cr3+,” J. Appl. Phys. 66, 1051-1056 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+--a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243-2252 (1988).
[CrossRef]

S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.

Solarz, R. W.

Sorokin, E.

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716-1718 (1997).
[CrossRef]

E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and Its Applications, F.X.Kärtner, ed. (Springer-Verlag, 2004), pp. 3-71.

Sorokina, I. T.

Stalder, M.

Stormont, B.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Strauss, A. J.

Szipocs, R.

Taasano, J. H.

Taguchi, N.

Tandon, S. N.

S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004).
[CrossRef]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
[CrossRef] [PubMed]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5.
[PubMed]

Tao, W.

X. Guo-Qiang, W. Tao, Z. He-Yuan, and Q. Lie-Jia, “Diode-pumped tunable laser with dual Cr:LiSAF rods,” Chin. Phys. 15, 547-551 (2006).
[CrossRef]

Tassano, J. B.

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992).
[CrossRef]

Taylor, J. R.

Tiihonen, M.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Torizuka, K.

S. Uemura and K. Torizuka, “Development of a diode-pumped Kerr-lens mode-locked Cr. LiSAF Laser,” IEEE J. Quantum Electron. 39, 68-73 (2003).
[CrossRef]

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys., Part 1 39, 3472-3473 (2000).
[CrossRef]

S. Uemeura and K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780-782 (1999).
[CrossRef]

Tschudi, T.

Tsuchida, H.

Tsuda, S.

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69, 1538-1540 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Udem, T.

Uecker, R.

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352-358 (2005).
[CrossRef]

Uemeura, S.

Uemura, S.

S. Uemura and K. Torizuka, “Development of a diode-pumped Kerr-lens mode-locked Cr. LiSAF Laser,” IEEE J. Quantum Electron. 39, 68-73 (2003).
[CrossRef]

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys., Part 1 39, 3472-3473 (2000).
[CrossRef]

S. Uemura and K. Miyazaki, “Thermal chracteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312-4315 (1997).
[CrossRef]

Valentine, G. J.

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998).
[CrossRef]

G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr+3:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639-1641 (1997).
[CrossRef]

Valster, A.

van der Poel, C. J.

Van Stryland, E. W.

Vieira, N. D.

Wa, P. L. K.

H. S. Wang, P. L. K. Wa, J. L. Lefaucheur, B. H. T. Chai, and A. Miller, “Cw and self-mode-locking performance of a red pumped Cr:LiSr0.8Ca0.2AlF6 laser,” Opt. Commun. 110, 679-688 (1994).
[CrossRef]

Wadsworth, W. J.

Wagenblast, P.

Wallenstein, R.

Wang, H. S.

H. S. Wang, P. L. K. Wa, J. L. Lefaucheur, B. H. T. Chai, and A. Miller, “Cw and self-mode-locking performance of a red pumped Cr:LiSr0.8Ca0.2AlF6 laser,” Opt. Commun. 110, 679-688 (1994).
[CrossRef]

Wang, S. H.

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

Wang, Y. C.

Y. C. Wang, C. E. Huang, L. S. Chen, and Z. Y. Fang, “Crystal growth of Cr3+:LiCaAlF6 by Bridgman technique,” J. Cryst. Growth 167, 176-179 (1996).
[CrossRef]

Weber, B. C.

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6:Cr3+ oscillator,” Opt. Commun. 149, 301-306 (1998).
[CrossRef]

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158-165 (1996).
[CrossRef]

Weingarten, K. J.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Wessels, P.

A. Isemann, P. Wessels, and C. Fallnich, “Directly diode-pumped colquiriite regenerative amplifiers,” Opt. Commun. 260, 211-222 (2006).
[CrossRef]

White, J. G.

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996).
[CrossRef]

Wilke, G. D.

S. A. Payne, L. L. Chase, and G. D. Wilke, “Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+: and LiCaAlF6:Cr3+,” J. Lumin. 44, 167-176 (1989).
[CrossRef]

Wintner, E.

Wokosin, D. L.

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996).
[CrossRef]

Woods, B. W.

Yang, Y.

Y. K. Kuo, Y. Yang, and M. Birnbaum, “Cr4+Gd3Sc2Ga3O12 passive Q-switch for the Cr3+LiCaAlF6 laser,” Appl. Phys. Lett. 64, 2329-2331 (1994).
[CrossRef]

Zendzian, W.

Zhang, G.

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
[CrossRef]

Zimmermann, M.

Annu. Rev. Mater. Sci.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453-502 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235-243 (1997).
[CrossRef]

F. Balembois, M. Gaignet, F. Louradour, V. Couderc, A. Barthelemy, P. Georges, and A. Brun, “Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system,” Appl. Phys. B 65, 255-258 (1997).
[CrossRef]

A. Isemann, H. Hundertmark, and C. Fallnich, “Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,” Appl. Phys. B 74, 299-306 (2002).
[CrossRef]

Appl. Phys. Lett.

Y. K. Kuo, Y. Yang, and M. Birnbaum, “Cr4+Gd3Sc2Ga3O12 passive Q-switch for the Cr3+LiCaAlF6 laser,” Appl. Phys. Lett. 64, 2329-2331 (1994).
[CrossRef]

S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69, 1538-1540 (1996).
[CrossRef]

M. Stalder, B. H. T. Chai, and M. Bass, “Flashlamp pumped Cr:LiSrAIF6 laser,” Appl. Phys. Lett. 58, 216-218 (1991).
[CrossRef]

C. R. Phys.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153-164 (2007).
[CrossRef]

Chin. Phys.

X. Guo-Qiang, W. Tao, Z. He-Yuan, and Q. Lie-Jia, “Diode-pumped tunable laser with dual Cr:LiSAF rods,” Chin. Phys. 15, 547-551 (2006).
[CrossRef]

Cryst. Res. Technol.

D. Klimm, R. Uecker, and P. Reiche, “Melting behavior and growth of colquiriite laser crystals,” Cryst. Res. Technol. 40, 352-358 (2005).
[CrossRef]

G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+:LiCaAlF6 single crystals,” Cryst. Res. Technol. 34, 1221-1227 (1999).
[CrossRef]

D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol. 34, 145-152 (1999).
[CrossRef]

D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol. 33, 409-416 (1998).
[CrossRef]

IEEE J. Quantum Electron.

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910-919 (1998).
[CrossRef]

Y.-K. Kuo, M.-F. Huang, and M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657-663 (1995).
[CrossRef]

P. Beaud, M. C. Richardson, Y. F. Chen, and B. H. T. Chai, “Optical amplification characteristics of Cr-LiSAF andCr-LiCAF under flashlamp-pumping,” IEEE J. Quantum Electron. 30, 1259-1266 (1994).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269-278 (1997).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360-368 (2002).
[CrossRef]

S. Uemura and K. Torizuka, “Development of a diode-pumped Kerr-lens mode-locked Cr. LiSAF Laser,” IEEE J. Quantum Electron. 39, 68-73 (2003).
[CrossRef]

P. A. Beaud, M. Richardson, and E. J. Miesak, “Multi-terawatt femtosecond Cr:LiSAF laser,” IEEE J. Quantum Electron. 31, 317-325 (1995).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+--a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243-2252 (1988).
[CrossRef]

R. Scheps, “Cr-LiCaAlF6 laser pumped by visible laser diodes,” IEEE J. Quantum Electron. 27, 1968-1970 (1991).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, L. D. DeLoach, and J. B. Tassano, “752 nm wing-pumped Cr:LiSAF laser,” IEEE J. Quantum Electron. 28, 1188-1196 (1992).
[CrossRef]

J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. QE-11, 874-881 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454-464 (1996).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

D. L. Wokosin, V. Centonze, J. G. White, D. Armstrong, G. Robertson, and A. I. Ferguson, “All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 1051-1065 (1996).
[CrossRef]

B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, K. Koynov, M. Tiihonen, S. H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, and E. Noonan, “Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3,” IEEE J. Sel. Top. Quantum Electron. 10, 1268-1276 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Scheps, “Laser-diode-pumped Cr:LiSrGaF6 laser,” IEEE Photon. Technol. Lett. 4, 548-550 (1992).
[CrossRef]

R. Scheps, J. F. Myers, and S. A. Payne, “Cw and Q-switched operation of a low threshold Cr+3:LiCaAlF6 laser,” IEEE Photon. Technol. Lett. 2, 626-628 (1990).
[CrossRef]

J. Appl. Phys.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSrAIF6:Cr3+,” J. Appl. Phys. 66, 1051-1056 (1989).
[CrossRef]

J. Cryst. Growth

Y. C. Wang, C. E. Huang, L. S. Chen, and Z. Y. Fang, “Crystal growth of Cr3+:LiCaAlF6 by Bridgman technique,” J. Cryst. Growth 167, 176-179 (1996).
[CrossRef]

J. J. Deyoreo, L. J. Atherton, and D. H. Roberts, “Elimination of scattering centers from Cr-LiCaAlF6,” J. Cryst. Growth 113, 691-697 (1991).
[CrossRef]

D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr:LiCaAlF6 and Cr:LiSrAlF6 by the Czochralski method,” J. Cryst. Growth 210, 683-693 (2000).
[CrossRef]

J. Electron. Mater.

S. N. Tandon, J. T. Gopinath, A. A. Erchak, G. S. Petrich, L. A. Kolodziejski, and E. P. Ippen, “Large-area oxidation of AlAs layers for dielectric stacks and thick buried oxides,” J. Electron. Mater. 33, 774-779 (2004).
[CrossRef]

J. Lumin.

S. A. Payne, L. L. Chase, and G. D. Wilke, “Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+: and LiCaAlF6:Cr3+,” J. Lumin. 44, 167-176 (1989).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. IV

N. Passilly, M. Fromager, K. A. Ameur, R. Moncorge, J. L. Doualan, A. Hirth, and G. Quarles, “Measurement of the index-inversion coupling contributing to the time-dependent nonlinear lens effect in a Cr3+:LiSAF laser,” J. Phys. IV 119, 257-258 (2004).

Jpn. J. Appl. Phys., Part 1

S. Uemura and K. Miyazaki, “Thermal chracteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312-4315 (1997).
[CrossRef]

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys., Part 1 39, 3472-3473 (2000).
[CrossRef]

Microsc. Res. Tech.

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 8-14 (2005).
[CrossRef] [PubMed]

Nature

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

Opt. Commun.

H. S. Wang, P. L. K. Wa, J. L. Lefaucheur, B. H. T. Chai, and A. Miller, “Cw and self-mode-locking performance of a red pumped Cr:LiSr0.8Ca0.2AlF6 laser,” Opt. Commun. 110, 679-688 (1994).
[CrossRef]

B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158-165 (1996).
[CrossRef]

B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlF6:Cr3+ oscillator,” Opt. Commun. 149, 301-306 (1998).
[CrossRef]

M. Fromager and K. A. Ameur, “Modeling of the self-Q-switching behavior of lasers based on chromium-doped active material,” Opt. Commun. 191, 305-314 (2001).
[CrossRef]

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207-213 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser,” Opt. Commun. 154, 54-58 (1998).
[CrossRef]

A. Isemann, P. Wessels, and C. Fallnich, “Directly diode-pumped colquiriite regenerative amplifiers,” Opt. Commun. 260, 211-222 (2006).
[CrossRef]

K. M. Gabel, P. Russbuldt, R. Lebert, and A. Valster, “Diode pumped Cr+3:LiCAF fs-laser,” Opt. Commun. 157, 327-334 (1998).
[CrossRef]

Opt. Eng. (Bellingham)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024-2036 (1995).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

T. A. Samtleben and E. Hulliger, “LiCaAlF6 and LiSrAlF6: tunable solid state laser host materials,” Opt. Lasers Eng. 43, 251-262 (2005).
[CrossRef]

Opt. Lett.

R. E. Samad, S. L. Baldochi, G. E. C. Nogueira, and N. D. Vieira, “30 WCr:LiSrAlF6 flashlamp-pumped pulsed laser,” Opt. Lett. 32, 50-52 (2007).
[CrossRef]

D. Kopf, U. Keller, M. A. Emanuel, R. J. Beach, and J. A. Skidmore, “1.1-W cw Cr:LiSAF laser pumped by a 1-cm diode array,” Opt. Lett. 22, 99-101 (1997).
[PubMed]

A. Miller, P. LiKamWa, B. H. T. Chai, and E. W. Van Stryland, “Generation of 150-fs tunable pulses in Cr:LiSAF6,” Opt. Lett. 17, 195-197 (1992).
[CrossRef] [PubMed]

F. Balembois, P. Georges, and A. Brun, “Quasi-continuous-wave and actively mode-locked diode-pumped Cr3+:LiSrAlF6 laser,” Opt. Lett. 18, 1730-1732 (1993).
[CrossRef] [PubMed]

P. M. W. French, R. Mellish, and J. R. Taylor, “Mode-locked all-solid-state diode-pumped Cr:LiSAF laser,” Opt. Lett. 18, 1934-1936 (1993).
[CrossRef] [PubMed]

N. H. Rizvi, P. M. W. French, and J. R. Taylor, “Generation of 33-fs pulses from a passively mode-locked Cr3+:LiSrAlF6 laser,” Opt. Lett. 17, 1605-1607 (1992).
[CrossRef] [PubMed]

R. Knappe, K. J. Boller, and R. Wallenstein, “Single-mode continuous-wave Cr3+:LiSaF ring laser from 800to936 nm ring laser-pumped by an injection-locked 670-nm broad-area diode-laser,” Opt. Lett. 20, 1988-1990 (1995).
[CrossRef] [PubMed]

D. Kopf, J. A. Derau, U. Keller, G. L. Bona, and P. Roentgen, “400-Mw continuous-wave diode-pumpedCr:LiSAF laser-based on a power-scalable concept,” Opt. Lett. 20, 1782-1784 (1995).
[CrossRef] [PubMed]

P. LiKamWa, B. H. T. Chai, and A. Miller, “Self-mode-locked Cr3+:LiCaAlF6 laser,” Opt. Lett. 17, 1438-1440 (1992).
[CrossRef] [PubMed]

U. Demirbas, A. Sennaroglu, A. Benedick, A. Siddiqui, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped, high-average power femtosecond Cr+3:LiCAF laser,” Opt. Lett. 32, 3309-3311 (2007).
[CrossRef] [PubMed]

A. Sanchez, R. E. Fahey, A. J. Strauss, and R. L. Aggarwal, “Room-temperature continuous-wave operation of a Ti-Al2O3 laser,” Opt. Lett. 11, 363-364 (1986).
[CrossRef] [PubMed]

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 5 fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373-375 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hansch, P. Russbuldt, K. Gabel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376-1378 (2001).
[CrossRef]

H. Tsuchida, “Timing-jitter reduction of a mode-locked Cr:LiSAF laser by simultaneous control of cavity length and pump power,” Opt. Lett. 25, 1475-1477 (2000).
[CrossRef]

R. Mellish, N. P. Barry, S. C. W. Hyde, R. Jones, P. M. W. French, J. R. Taylor, C. J. van der Poel, and A. Valster, “Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier,” Opt. Lett. 20, 2312-2314 (1995).
[CrossRef] [PubMed]

P. Beaud, M. Richardson, E. J. Miesak, and B. H. T. Chai, “8-TW90-fs Cr:LiSaF laser,” Opt. Lett. 18, 1550-1552 (1993).
[CrossRef] [PubMed]

U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Highly efficient, low-cost femtosecond Cr+3:LiCAF laser pumped by single-mode diodes,” Opt. Lett. 33, 590-592 (2008).
[CrossRef] [PubMed]

G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr+3:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639-1641 (1997).
[CrossRef]

P. Wagenblast, R. Ell, U. Morgner, F. Grawert, and F. X. Kärtner, “Diode-pumped 10-fsCr+3:LiCAF laser,” Opt. Lett. 28, 1713-1715 (2003).
[CrossRef] [PubMed]

P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G.Angelow, M. J. Lederer, and F. X. Kärtner, “Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr+3:LiCAF laser oscillator using third-order dispersion-compensating double-chirped mirrors,” Opt. Lett. 27, 1726-1729 (2002).
[CrossRef]

S. Uemeura and K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780-782 (1999).
[CrossRef]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716-1718 (1997).
[CrossRef]

B. H. T. Chai, J.-L. Lefaucheur, M. Stalder, and M. Bass, “Cr:LiSr0.8Ca0.2AlF6 tunable laser,” Opt. Lett. 17, 1584-1586 (1992).
[CrossRef] [PubMed]

R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820-822 (1991).
[CrossRef] [PubMed]

U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm,” Opt. Lett. 31, 2293-2295 (2006).
[CrossRef] [PubMed]

P. Beaud, Y.-F. Chen, B. H. T. Chai, and M. C. Richardson, “Gain properties of LiSrAlF6:Cr3+,” Opt. Lett. 17, 1064-1066 (1992).
[CrossRef] [PubMed]

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551-2553 (2004).
[CrossRef] [PubMed]

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387-389 (1997).
[CrossRef] [PubMed]

V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28, 239-241 (2003).
[CrossRef] [PubMed]

Opt. Mater.

R. Scheps, “Cr-doped solid-state lasers pumped by visible laser diodes,” Opt. Mater. 1, 1-9 (1992).
[CrossRef]

Opt. Quantum Electron.

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-pumped laser performance of LiCaAlF6:Cr3+,” Opt. Quantum Electron. 22, S259-S268(1990).
[CrossRef]

Phys. Lett.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Phys. Rev. B

H. W. H. Lee, S. A. Payne, and L. L. Chase, “Excited-state absorption of Cr+3 in LiCaAlF6: effects of asymmetric distortions and intensity selection rules,” Phys. Rev. B 39, 8907-8914 (1989).
[CrossRef]

Q. Rev. Biophys.

A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97-166 (2005).
[CrossRef]

Other

E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and Its Applications, F.X.Kärtner, ed. (Springer-Verlag, 2004), pp. 3-71.

L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (CLEO), vol. 14, of 1987 OSA Technical Digest Series (Optical Society of America, 1987), pp. 296-298.

S. A. Payne, L. L. Chase, L. J. Atherton, J. A. Caird, W. L. Kway, M. D. Shinn, R. S. Hughes, and L. K. Smith, “Properties and performance of the LiCaAlF6:Cr3+ laser material,” in SPIE Solid State Lasers (SPIE, 1990), 84-93.

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Broadband saturable Bragg reflectors from the infrared to visible using oxidized AIAs,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThV5.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic of the tunable Ti:sapphire-pumped Cr 3 + : Li CAF laser system. The Ti:sapphire laser (Tunable Ti:S) was tuned to provide up to 550 mW of pump power at 694 nm . HWP, half wave plate; PBS, polarizing beam splitter cube; M1 and M2, curved pump mirrors with R = 75 mm ; M3, flat high reflector; OC, output coupler.

Fig. 2
Fig. 2

Cw efficiency curves for the Ti:sapphire-pumped Cr 3 + : Li CAF laser (Fig. 1) taken with the 0.5% and 1.95% output couplers. The measured slope efficiencies with respect to absorbed pump power were 44% and 60% for the 0.5% and 1.95% output couplers, respectively.

Fig. 3
Fig. 3

Measured variation of the maximum output power with output coupler transmission taken with full pump power of 360 mW (absorbed). Optimum output coupling is 1–2%. The data were taken using the Ti:sapphire-pumped Cr 3 + : Li CAF laser system shown in Fig. 1.

Fig. 4
Fig. 4

Measured variation of the pump power required to attain lasing ( P th ) as a function of output coupler transmission T. Using Findlay–Clay analysis, the round-trip passive cavity loss L was estimated to be 0.3 ± 0.1 % . Solid line is the best linear fit to the experimentally measured data using Eq. (1). The data were taken using the Ti:sapphire-pumped Cr 3 + : Li CAF laser system shown in Fig. 1.

Fig. 5
Fig. 5

Measured variation of 1 η (inverse of slope efficiency) with 1 T (inverse of the output coupling). Using Caird analysis, the round-trip passive cavity loss L and intrinsic slope efficiency ( η 0 ) were calculated to be 0.25 ± 0.2 % and 66 ± 5 % , respectively. The data were taken using the Ti:sapphire-pumped Cr 3 + : Li CAF laser system shown in Fig. 1.

Fig. 6
Fig. 6

Schematic of the multimode diode-pumped Cr 3 + : Li CAF laser system. Two multimode diodes (DM1 and DM2), each providing 1.6 W of pump power at 665 nm , were used as the pump source. Dashed lines indicate the mode-locked laser cavity. A slit near the OC (tangential plane) was used to control the transverse mode structure of the laser beam. M1 and M2, pump mirrors with R = 75 mm ; M3, flat high reflector; OC, output coupler; DCM-1, curved ( R = 100 mm ) double-chirped mirror with 300 fs 2 dispersion per bounce; SESAM/SBR, semiconductor saturable absorber mirror/saturable Bragg reflector.

Fig. 7
Fig. 7

Measured output beam profile of the multimode diode-pumped Cr 3 + : Li CAF laser (Fig. 6) using a CCD camera (a) without the intracavity slit and (b) with the intracavity slit. Adjusting the width of the intracavity slit in the tangential plane enabled TEM00 laser output.

Fig. 8
Fig. 8

Cw efficiency curves for the multimode diode-pumped Cr 3 + : Li CAF laser (Fig. 6), taken with 1.4%, 3%, and 5% output couplers, without the intracavity slit. The laser output was multimode [Fig. 7a]. Data up to 1.5 W of absorbed pump power was taken using multimode diode 1 only (DM1); then multimode diode 2 (DM2) was also turned on, which provided up to 3 W of total absorbed pump power. The measured slope efficiencies with respect to absorbed pump power were 32%, 26%, and 16% for the 1.4%, 3%, and 5% output couplers, respectively. The observed saturation at high pump power levels and the reduction of the obtainable output power levels with increasing output coupling are due to thermal effects.

Fig. 9
Fig. 9

Cw efficiency curves for the multimode diode-pumped Cr 3 + : Li CAF laser (Fig. 6), taken with 0.85%, 3%, and 5% output couplers, with the intracavity slit. The laser output was single mode (Fig. 7b). The measured slope efficiencies with respect to absorbed pump power were 19%, 15%, and 10% for the 0.85%, 3%, and 5% output couplers, respectively.

Fig. 10
Fig. 10

Cw efficiency curves for the multimode diode-pumped Cr 3 + : Li CAF laser taken by using two different Cr:LiCAF crystals: (i) a 2 mm long 10% chromium-doped and (ii) a 2.5 mm long 11% chromium-doped Cr:LiCAF crystal. The data were taken with the 1.4% output coupler without using the intracavity slit; hence, the laser output was multimode. For this experiment, two more multimode pump diodes were inserted into the existing cavity (Fig. 6) using polarization coupling, which enabled more than 5 W of incident pump power. Due to thermal effects, up to 4 W of the available pump power was used in the experiments.

Fig. 11
Fig. 11

Efficiency curve for the multimode diode-pumped mode-locked Cr 3 + : Li CAF laser in different regimes of operation taken with the 1.4% output coupler. The slit near the output coupler was used to provide a TEM 00 laser output. cw, continuous-wave operation; Q-switched ML, Q-switched modelocked operation; cw ML, continuous-wave modelocked operation.

Fig. 12
Fig. 12

Measured spectrum and second-harmonic autocorrelation taken with the multimode diode-pumped mode-locked Cr 3 + : Li CAF laser using the 1.4% output coupler at an absorbed pump power of 2.4 W . The full width at half-maximum (FWHM) of the autocorrelation is 147 fs , corresponding to a 97 fs pulse duration (assuming sech 2 pulse shape). The average output power is 390 mW , corresponding to a pulse energy of 2.8 nJ for a 140 MHz repetition rate cavity. The spectrum has a bandwidth of 8 nm FWHM centered around 795 nm . The corresponding time bandwidth product is 0.35 .

Fig. 13
Fig. 13

Schematic of the single-mode diode-pumped Cr 3 + : Li CAF laser system. Four single-mode diodes (DS1–DS4), each providing 160 170 mW of pump power at 660 nm , was used as the pump source. Dashed lines indicate the cw laser cavity. PBS, polarizing beam splitter cube; M1 and M2, pump mirrors with R = 75 mm ; M3, flat high reflector; M4, curved high reflector with R = 75 mm ; OC, output coupler; DCM-2, flat double-chirped mirrors with 50 fs 2 dispersion per bounce; SESAM/SBR, semiconductor saturable absorber mirror/saturable Bragg reflector.

Fig. 14
Fig. 14

Cw efficiency curves for the single-mode diode-pumped Cr 3 + : Li CAF laser (Fig. 13) taken with 0.5% and 1.95% output couplers. The measured slope efficiencies with respect to absorbed pump power were 35% and 54% for the 0.5% and 1.95% output couplers, respectively.

Fig. 15
Fig. 15

Cw tuning curve of the single-mode diode-pumped Cr 3 + : Li CAF laser taken with the 0.85% output coupler. Laser wavelength could be tuned smoothly between 765 and 865 nm using a fused-silica prism in the high-reflector arm. The data were taken at an absorbed pump power of 570 mW using the single-mode diode-pumped Cr 3 + : Li CAF laser system shown in Fig. 13.

Fig. 16
Fig. 16

Efficiency curve for the single-mode diode-pumped mode-locked Cr 3 + : Li CAF laser in different regimes of operation taken with the 0.85% output coupler. cw, continuous-wave operation; Q-switched ML, Q-switched modelocked operation; cw ML, continuous-wave modelocked operation.

Fig. 17
Fig. 17

Measured spectrum and second-harmonic autocorrelation taken with the single-mode diode-pumped Cr 3 + : Li CAF laser using the 0.85% output coupler at an incident pump power of 570 mW . The FWHM of the autocorrelation is 95 fs , corresponding to a 63 fs pulse duration (assuming sech 2 pulse shape). The average output power is 144 mW , corresponding to pulse energy of 1.13 nJ for a 127 MHz repetition rate cavity. The spectrum has a bandwidth of 12 nm (FWHM) centered around 805 nm . The corresponding time bandwidth product is 0.35 .

Tables (4)

Tables Icon

Table 1 Comparison of the Physical Properties of the Ti 3 + : Al 2 O 3 (Ti:sapphire), Cr + 3 : Li Sr Al F 6 ( Cr + 3 : Li S A F ) and Cr + 3 : Li Ca Al F 6 ( Cr + 3 : Li C A F ) Gain Media

Tables Icon

Table 2 List of Output Powers, Slope Efficiencies (with Respect to Absorbed Pump Power), and Tuning Ranges Obtained with Cr:LiCAF Gain Media in cw Operation Using Several Different Pump Sources a

Tables Icon

Table 3 List of Pulse Energies, Pulse Widths, Slope Efficiencies, and Tuning Ranges Obtained with Cr:LiCAF Gain Media in Long-pulse Mode Laser Operation (ns to ms Pulses) Using Different Pump Sources

Tables Icon

Table 4 List of Average Output Powers, Pulse Energies, and Pulse Widths Obtained with Cr:LiCAF Gain Media in cw Mode-Locked Operation Using Different Pump Sources

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P th = π ( w p 2 + w c 2 ) h ν p 4 ( σ e σ ESA ) τ f η p ( 2 A g + T + L ) ,
η = [ ( h ν l h ν p ) η p ( σ e σ ESA σ e ) ] T T + L = η 0 T T + L ,
E P , c = E sat , L E sat , A Δ R ,
E sat , L = h ν l ( m σ em ) A eff , L ,
E sat , A = F sat , A A eff , A .
E P , c = h ν l ( m σ em ) A eff , L F sat , A A eff , A Δ R .

Metrics