Abstract

It is predicted that the fundamental spatial solitons, namely bright, dark, and gray solitons associated with photoisomerization, can be formed stably except for antidark solitons. The soliton solutions and the relative properties of these solitons are given in detail. Incoherently coupled bright–dark soliton pairs are also investigated. Both the cases indicate that although the formation of a spontaneous bright soliton based on photoisomerization is impossible, it is, however, possible to form a bright soliton with the joining of a background light or the coupling of another dark soliton. The results provide possible methods of controlling a light with another light.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
    [CrossRef] [PubMed]
  2. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518-1523 (1999).
    [CrossRef] [PubMed]
  3. X. S. Wang, W. L. She, and W. K. Lee, “Optical spatial solitons supported by photoisomerization nonlinearity in a polymer,” Opt. Lett. 29, 277-279 (2004).
    [CrossRef] [PubMed]
  4. X. S. Wang and W. L. She, “Spontaneous one- and two-dimensional optical spatial solitons supported by photoisomerization nonlinearity in a bulk polymer,” Phys. Rev. E 71, 026601 (2005).
    [CrossRef]
  5. X. S. Wang, W. L. She, S. Z. Wu, and F. Zeng, “Circularly polarized optical spatial solitons,” Opt. Lett. 30, 863-865 (2005).
    [CrossRef] [PubMed]
  6. S. Bian and M. G. Kuzyk, “Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation,” Appl. Phys. Lett. 85, 1104-1106 (2004).
    [CrossRef]
  7. J. Liang and X. Zhou, “Application of continuous-wave laser Z-scan technique to photoisomerization,” J. Opt. Soc. Am. B 22, 2468-2471 (2005).
    [CrossRef]
  8. J. Liang, H. Zhao, X. Zhou, and H. Wang, “Polarization-dependent effects of refractive index change associated with photoisomerization investigated with Z-scan technique,” J. Appl. Phys. 101, 013106 (2007).
    [CrossRef]
  9. A. W. Snyder and Y. S. Kivshar, “Bright spatial solitons in non-Kerr media: stationary beams and dynamical evolution,” J. Opt. Soc. Am. B 14, 3025-3031 (1997).
    [CrossRef]
  10. V. I. Kluglov and J. D. Harvey, “Asymptotically exact parabolic solution of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541-2550 (2006).
    [CrossRef]
  11. V. I. Kluglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solution of the generalized nonlinear Schrödiner equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
    [CrossRef]
  12. T. H. Coskun, D. N. Christodoulides, M. Mitchell, Z. Chen, and M. Segev, “Dynamics of incoherent bright and dark self-trapped beams and their coherence properties in photorefractive crystals,” Opt. Lett. 23, 418-420 (1998).
    [CrossRef]
  13. Z. Chen, M. Segev, D. N. Christodoulides, and R. S. Feigelson, “Waveguides formed by incoherent dark solitons,” Opt. Lett. 24, 1160-1162 (1999).
    [CrossRef]
  14. H. Wang and W. She, “Nonparaxial optical Kerr vortex solitons with radial polarization,” Opt. Express 14, 1590-1595 (2006).
    [CrossRef] [PubMed]
  15. A. G. Grandpierre, D. N. Christodoulides, T. H. Coskun, M. Segev, and Y. S. Kivshar, “Gray spatial solitons in biased photorefractive media,” J. Opt. Soc. Am. B 18, 55-63 (2001).
    [CrossRef]
  16. H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, and B. A. Malomed, “Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrödinger equation,” Phys. Lett. A 278, 68-76 (2000).
    [CrossRef]
  17. L. Li, B. A. Malomed, D. Mihalache, and W. M. Liu, “Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates,” Phys. Rev. E 73, 066610 (2006).
    [CrossRef]
  18. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
    [CrossRef] [PubMed]
  19. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948-2951 (1997).
    [CrossRef]
  20. C. Anastassiou, M. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23, 924-926 (1998).
    [CrossRef]
  21. L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789-1799 (1988).
    [CrossRef]
  22. T. Buffeteau, F. L. Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules 34, 7514-7521 (2001).
    [CrossRef]
  23. B. V. Gisin, R. Driben, and B. A. Malomed, “Bistable guided solitons in the cubic-quintic medium,” J. Opt. B: Quantum Semiclassical Opt. 6, S259-S264 (2004).
    [CrossRef]

2007 (1)

J. Liang, H. Zhao, X. Zhou, and H. Wang, “Polarization-dependent effects of refractive index change associated with photoisomerization investigated with Z-scan technique,” J. Appl. Phys. 101, 013106 (2007).
[CrossRef]

2006 (3)

2005 (3)

2004 (3)

S. Bian and M. G. Kuzyk, “Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation,” Appl. Phys. Lett. 85, 1104-1106 (2004).
[CrossRef]

X. S. Wang, W. L. She, and W. K. Lee, “Optical spatial solitons supported by photoisomerization nonlinearity in a polymer,” Opt. Lett. 29, 277-279 (2004).
[CrossRef] [PubMed]

B. V. Gisin, R. Driben, and B. A. Malomed, “Bistable guided solitons in the cubic-quintic medium,” J. Opt. B: Quantum Semiclassical Opt. 6, S259-S264 (2004).
[CrossRef]

2003 (1)

V. I. Kluglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solution of the generalized nonlinear Schrödiner equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef]

2001 (2)

A. G. Grandpierre, D. N. Christodoulides, T. H. Coskun, M. Segev, and Y. S. Kivshar, “Gray spatial solitons in biased photorefractive media,” J. Opt. Soc. Am. B 18, 55-63 (2001).
[CrossRef]

T. Buffeteau, F. L. Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules 34, 7514-7521 (2001).
[CrossRef]

2000 (1)

H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, and B. A. Malomed, “Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrödinger equation,” Phys. Lett. A 278, 68-76 (2000).
[CrossRef]

1999 (2)

Z. Chen, M. Segev, D. N. Christodoulides, and R. S. Feigelson, “Waveguides formed by incoherent dark solitons,” Opt. Lett. 24, 1160-1162 (1999).
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

1998 (2)

1997 (2)

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

A. W. Snyder and Y. S. Kivshar, “Bright spatial solitons in non-Kerr media: stationary beams and dynamical evolution,” J. Opt. Soc. Am. B 14, 3025-3031 (1997).
[CrossRef]

1995 (1)

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

1992 (1)

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

1988 (1)

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Anastassiou, C.

Balourdos, P. S.

H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, and B. A. Malomed, “Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrödinger equation,” Phys. Lett. A 278, 68-76 (2000).
[CrossRef]

Bashaw, M. C.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Bian, S.

S. Bian and M. G. Kuzyk, “Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation,” Appl. Phys. Lett. 85, 1104-1106 (2004).
[CrossRef]

Buffeteau, T.

T. Buffeteau, F. L. Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules 34, 7514-7521 (2001).
[CrossRef]

Chen, Z.

Christodoulides, D. N.

Coskun, T. H.

Crosignani, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Dragostinova, V.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Driben, R.

B. V. Gisin, R. Driben, and B. A. Malomed, “Bistable guided solitons in the cubic-quintic medium,” J. Opt. B: Quantum Semiclassical Opt. 6, S259-S264 (2004).
[CrossRef]

Feigelson, R. S.

Fejer, M. M.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Frantzeskakis, D. J.

H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, and B. A. Malomed, “Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrödinger equation,” Phys. Lett. A 278, 68-76 (2000).
[CrossRef]

Gisin, B. V.

B. V. Gisin, R. Driben, and B. A. Malomed, “Bistable guided solitons in the cubic-quintic medium,” J. Opt. B: Quantum Semiclassical Opt. 6, S259-S264 (2004).
[CrossRef]

Grandpierre, A. G.

Harvey, J. D.

V. I. Kluglov and J. D. Harvey, “Asymptotically exact parabolic solution of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541-2550 (2006).
[CrossRef]

V. I. Kluglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solution of the generalized nonlinear Schrödiner equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef]

Kivshar, Y. S.

Kluglov, V. I.

V. I. Kluglov and J. D. Harvey, “Asymptotically exact parabolic solution of the generalized nonlinear Schrödinger equation with varying parameters,” J. Opt. Soc. Am. B 23, 2541-2550 (2006).
[CrossRef]

V. I. Kluglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solution of the generalized nonlinear Schrödiner equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef]

Kuzyk, M. G.

S. Bian and M. G. Kuzyk, “Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation,” Appl. Phys. Lett. 85, 1104-1106 (2004).
[CrossRef]

Labarthet, F. L.

T. Buffeteau, F. L. Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules 34, 7514-7521 (2001).
[CrossRef]

Lee, W. K.

Li, L.

L. Li, B. A. Malomed, D. Mihalache, and W. M. Liu, “Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates,” Phys. Rev. E 73, 066610 (2006).
[CrossRef]

Liang, J.

J. Liang, H. Zhao, X. Zhou, and H. Wang, “Polarization-dependent effects of refractive index change associated with photoisomerization investigated with Z-scan technique,” J. Appl. Phys. 101, 013106 (2007).
[CrossRef]

J. Liang and X. Zhou, “Application of continuous-wave laser Z-scan technique to photoisomerization,” J. Opt. Soc. Am. B 22, 2468-2471 (2005).
[CrossRef]

Liu, W. M.

L. Li, B. A. Malomed, D. Mihalache, and W. M. Liu, “Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates,” Phys. Rev. E 73, 066610 (2006).
[CrossRef]

Maker, P. D.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

Malomed, B. A.

L. Li, B. A. Malomed, D. Mihalache, and W. M. Liu, “Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates,” Phys. Rev. E 73, 066610 (2006).
[CrossRef]

B. V. Gisin, R. Driben, and B. A. Malomed, “Bistable guided solitons in the cubic-quintic medium,” J. Opt. B: Quantum Semiclassical Opt. 6, S259-S264 (2004).
[CrossRef]

H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, and B. A. Malomed, “Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrödinger equation,” Phys. Lett. A 278, 68-76 (2000).
[CrossRef]

Markovsky, P.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Mateva, N.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Mihalache, D.

L. Li, B. A. Malomed, D. Mihalache, and W. M. Liu, “Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates,” Phys. Rev. E 73, 066610 (2006).
[CrossRef]

Mitchell, M.

Muller, R. E.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

Nikolova, L.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Nistazakis, H. E.

H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, and B. A. Malomed, “Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrödinger equation,” Phys. Lett. A 278, 68-76 (2000).
[CrossRef]

Peacock, A. C.

V. I. Kluglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solution of the generalized nonlinear Schrödiner equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef]

Pezolet, M.

T. Buffeteau, F. L. Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules 34, 7514-7521 (2001).
[CrossRef]

Segev, M.

A. G. Grandpierre, D. N. Christodoulides, T. H. Coskun, M. Segev, and Y. S. Kivshar, “Gray spatial solitons in biased photorefractive media,” J. Opt. Soc. Am. B 18, 55-63 (2001).
[CrossRef]

Z. Chen, M. Segev, D. N. Christodoulides, and R. S. Feigelson, “Waveguides formed by incoherent dark solitons,” Opt. Lett. 24, 1160-1162 (1999).
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

C. Anastassiou, M. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23, 924-926 (1998).
[CrossRef]

T. H. Coskun, D. N. Christodoulides, M. Mitchell, Z. Chen, and M. Segev, “Dynamics of incoherent bright and dark self-trapped beams and their coherence properties in photorefractive crystals,” Opt. Lett. 23, 418-420 (1998).
[CrossRef]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

She, W.

She, W. L.

Shih, M.

Snyder, A. W.

Sourisseau, C.

T. Buffeteau, F. L. Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules 34, 7514-7521 (2001).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

Taya, M.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Tomova, N.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Tsigopoulos, A.

H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, and B. A. Malomed, “Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrödinger equation,” Phys. Lett. A 278, 68-76 (2000).
[CrossRef]

Valley, G. C.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Wang, H.

J. Liang, H. Zhao, X. Zhou, and H. Wang, “Polarization-dependent effects of refractive index change associated with photoisomerization investigated with Z-scan technique,” J. Appl. Phys. 101, 013106 (2007).
[CrossRef]

H. Wang and W. She, “Nonparaxial optical Kerr vortex solitons with radial polarization,” Opt. Express 14, 1590-1595 (2006).
[CrossRef] [PubMed]

Wang, X. S.

Wilson, D. W.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

Wu, S. Z.

Yariv, A.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Zeng, F.

Zhao, H.

J. Liang, H. Zhao, X. Zhou, and H. Wang, “Polarization-dependent effects of refractive index change associated with photoisomerization investigated with Z-scan technique,” J. Appl. Phys. 101, 013106 (2007).
[CrossRef]

Zhou, X.

J. Liang, H. Zhao, X. Zhou, and H. Wang, “Polarization-dependent effects of refractive index change associated with photoisomerization investigated with Z-scan technique,” J. Appl. Phys. 101, 013106 (2007).
[CrossRef]

J. Liang and X. Zhou, “Application of continuous-wave laser Z-scan technique to photoisomerization,” J. Opt. Soc. Am. B 22, 2468-2471 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

S. Bian and M. G. Kuzyk, “Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation,” Appl. Phys. Lett. 85, 1104-1106 (2004).
[CrossRef]

J. Appl. Phys. (1)

J. Liang, H. Zhao, X. Zhou, and H. Wang, “Polarization-dependent effects of refractive index change associated with photoisomerization investigated with Z-scan technique,” J. Appl. Phys. 101, 013106 (2007).
[CrossRef]

J. Mod. Opt. (1)

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

B. V. Gisin, R. Driben, and B. A. Malomed, “Bistable guided solitons in the cubic-quintic medium,” J. Opt. B: Quantum Semiclassical Opt. 6, S259-S264 (2004).
[CrossRef]

J. Opt. Soc. Am. B (4)

Macromolecules (1)

T. Buffeteau, F. L. Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules 34, 7514-7521 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Lett. A (1)

H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, and B. A. Malomed, “Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrödinger equation,” Phys. Lett. A 278, 68-76 (2000).
[CrossRef]

Phys. Rev. A (1)

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (2)

L. Li, B. A. Malomed, D. Mihalache, and W. M. Liu, “Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates,” Phys. Rev. E 73, 066610 (2006).
[CrossRef]

X. S. Wang and W. L. She, “Spontaneous one- and two-dimensional optical spatial solitons supported by photoisomerization nonlinearity in a bulk polymer,” Phys. Rev. E 71, 026601 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

V. I. Kluglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solution of the generalized nonlinear Schrödiner equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003).
[CrossRef]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948-2951 (1997).
[CrossRef]

Science (1)

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Normalized intensity profile of the dark soliton whose maximum field is r = 1 ; (b) existence curve of the dark solitons. The parameter relations are b = a 4 , c = 2 a , and d = a .

Fig. 2
Fig. 2

(a) Normalized intensity profile of the gray soliton with different grayness degree m, whose maximum field is r = 1 ; (b) existence curves of the gray solitons with the corresponding grayness degree of that in (a). The parameter relations are b = a 4 , c = 2 a , and d = a .

Fig. 3
Fig. 3

(a) Normalized intensity profile of the bright soliton whose maximum field is u = 1 ; (b) existence curve of the bright solitons. The parameter relations are b = a 4 , c = 8 a , and d = a .

Fig. 4
Fig. 4

Field profiles of the bright–dark spatial soliton pair. The different colors of the lines denotes different wavelengths of the solitons.

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

d N T d t = N T q ( σ I cos 2 θ + σ b I b ) + N C q ( σ I + σ b I b ) + γ N C ,
N = N T ( θ ) + N C ( θ ) ,
N T ( θ ) = N ( 1 + σ q cos 2 θ I + σ b q I b σ q I + σ b q I b + γ ) 1 .
N T ( θ ) N ( 1 σ q cos 2 θ I + σ b q I b σ q I + σ b q I b + γ ) .
Δ n = α [ N T N T ( I = 0 ) ] cos 2 θ d Ω = 2 π α N ( b d a I + b c I + d ) = 2 π α N f ( I ) ,
f ( I ) = b d a I + b c I + d .
i E ( X , Z ) Z + 1 2 k 2 E ( X , Z ) X 2 + k 0 2 Δ ( n 2 ) 2 k E ( X , Z ) = 0 ,
i E ( x , z ) z + 1 2 2 E ( x , z ) x 2 + f ( E ( x , z ) 2 ) E ( x , z ) = 0 ,
E ( x , z ) = ψ ( s , t ) exp [ i ( α s + β t ) ] ,
i ψ t + 1 2 2 ψ s 2 + f ( ψ 2 ) ψ = 0 .
ψ ( s , t ) = ρ g ( s ) exp [ i ( φ ( s ) + p t ) ] ,
p g + 1 2 g 1 2 g φ 2 + f ( ρ 2 g 2 ) g + i ( g φ + 1 2 g φ ) = 0 ,
d d s ( g 2 d φ d s ) = 0 ,
p g + 1 2 g 1 2 g φ 2 + f ( ρ 2 g 2 ) g = 0 .
φ ( s ) = v 0 s g 2 ( s ) d s + φ 0 ,
p g + 1 2 g v 2 2 g 3 + f ( ρ 2 g 2 ) g = 0 .
g 2 = 2 p g 2 2 p r 2 ρ 2 + v 2 ρ 2 r 2 v 2 g 2 + 2 ρ 2 ρ 2 g 2 r 2 f ( τ ) d τ .
2 p u 2 ρ 2 2 p r 2 ρ 2 + v 2 ρ 2 r 2 v 2 ρ 2 u 2 + 2 ρ 2 u 2 r 2 f ( τ ) d τ = 0 ,
p r ρ 1 2 v 2 ρ 3 r 3 + f ( r 2 ) r ρ = 0 .
p = r 2 r 2 u 2 f ( r 2 ) u 2 ( u 2 r 2 ) 2 u 2 r 2 f ( τ ) d τ ,
v = u r 2 ρ 2 [ 2 f ( r 2 ) ( u 2 r 2 ) + 2 u 2 r 2 f ( τ ) d τ ( u 2 r 2 ) 2 ] 1 2 .
d s d g = ( 2 p g 2 2 p r 2 ρ 2 + v 2 ρ 2 r 2 v 2 g 2 + 2 ρ 2 ρ 2 g 2 r 2 f ( τ ) d τ ) 1 2 .
w = 2 u ρ ( u 2 + r 2 ) 2 ρ 2 ( 2 p g 2 2 p r 2 ρ 2 + v 2 ρ 2 r 2 v 2 g 2 + 2 ρ 2 ρ 2 g 2 r 2 f ( τ ) d τ ) 1 2 d g .
2 p g 2 2 p r 2 ρ 2 + 2 ρ 2 ρ 2 g 2 r 2 f ( τ ) d τ 0 .
g 2 0 u 2 f ( τ ) d τ 0 u 2 g 2 f ( τ ) d τ ,
( g 1 ) f ( r 2 ) 1 r 2 r 2 r 2 g 2 f ( τ ) d τ ,
u 2 r 2 f ( τ ) d τ ( r 2 u 2 ) f ( r 2 ) ,
r 2 u 2 f ( τ ) d τ ( u 2 r 2 ) f ( r 2 ) ,
f ( I ) = 1 4 I + 1 4 2 I + 1 .
g + 2 r 2 + 1 2 2 r 2 + 1 g 2 r 2 g 3 + ( 1 2 ) g 2 r 2 g 2 + 1 = 0 ,
w = 2 0 1 2 [ 1 4 r 2 + 2 ( g 2 1 ) + 1 4 r 2 ln 2 r 2 + 1 2 r 2 g 2 + 1 ] 1 2 d g .
f ( I ) = 1 4 I + 1 4 8 I + 1
d N T ( θ ) d t = N T ( θ ) ( q σ 1 I 1 + q σ 2 I 2 ) cos 2 θ + N C ( θ ) ( q σ 1 I 1 + q σ 2 I 2 ) + γ N C ( θ ) ,
Δ n j = m j I 1 + a I 2 b I 1 + c I 2 + d ,
E j = E j x = A j ( x , z ) exp [ i ( k j z ω j t ) ] ( j = 1 , 2 ) ,
A j ( x , z ) z i 2 k j 2 A j ( x , z ) x 2 i k j Δ n j n j A j ( x , z ) = 0 .
ξ = ( 2 k j 2 m j n j ) 1 2 x , δ 1 = n j Γ j k j m j , η = k 1 2 m 1 n 2 k 2 2 m 2 n 1 ,
2 u 1 ( ξ ) ξ 2 = u 1 ( ξ ) [ δ 1 u 1 2 + a u 2 2 b u 1 2 + c u 2 2 + d ] ,
2 u 2 ( ξ ) ξ 2 = η u 2 ( ξ ) [ δ 2 u 1 2 + a u 2 2 b u 1 2 + c u 2 2 + d ] .
u 10 2 + a u 20 2 b u 10 2 + c u 20 2 + d < u 1 2 + a u 2 2 b u 1 2 + c u 2 2 + d .

Metrics