Abstract

We propose a scheme for the generation of two-mode entangled states between two spatially separated cavities. It utilizes a two-level atom sequentially coupling to two high-Q cavities with strong classical driving fields. By suitably choosing the intensities and detunings of the fields and precisely controlling the dynamics, entangled coherent states and Bell states can be produced between the modes of the two cavities. These entangled states should have applications in quantum information processing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, 195-290 (1965).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  3. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science(IEEE, 1994), p. 116.
  4. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
    [CrossRef]
  5. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
    [CrossRef] [PubMed]
  6. A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  7. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).
  8. H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr., T 76, 127-137 (1998).
    [CrossRef]
  9. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
    [CrossRef]
  10. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372-1377 (2002).
    [CrossRef] [PubMed]
  11. A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
    [CrossRef]
  12. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488-490 (2007).
    [CrossRef] [PubMed]
  13. M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
    [CrossRef] [PubMed]
  14. C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, “A Schrödinger cat superposition state of an atom,” Science 272, 1131-1136 (1996).
    [CrossRef] [PubMed]
  15. G. S. Agarwal and R. R. Puri, “Quantum theory of propagation of elliptically polarized light through a Kerr medium,” Phys. Rev. A 40, 5179-5186 (1989).
    [CrossRef] [PubMed]
  16. E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
    [CrossRef] [PubMed]
  17. D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
    [CrossRef]
  18. J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
    [CrossRef]
  19. R. G. Maraver, K. Eckert, R. Corbalan, and J. Mompart, “Cavity-quantum-electrodynamics entangled photon source based on two truncated Rabi oscillations,” J. Opt. Soc. Am. B 24, 257-265 (2007).
    [CrossRef]
  20. J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
    [CrossRef]
  21. P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Effective generation of polarization-entangled photon pairs in a cavity-QED system,” Phys. Lett. A 372, 5959-5963 (2008).
    [CrossRef]
  22. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89-109 (1963).
    [CrossRef]
  23. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777-780 (1935).
    [CrossRef]
  24. H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023-1030 (2008).
    [CrossRef]
  25. S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
    [CrossRef]

2008 (2)

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Effective generation of polarization-entangled photon pairs in a cavity-QED system,” Phys. Lett. A 372, 5959-5963 (2008).
[CrossRef]

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023-1030 (2008).
[CrossRef]

2007 (3)

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

R. G. Maraver, K. Eckert, R. Corbalan, and J. Mompart, “Cavity-quantum-electrodynamics entangled photon source based on two truncated Rabi oscillations,” J. Opt. Soc. Am. B 24, 257-265 (2007).
[CrossRef]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488-490 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

2005 (1)

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

2003 (2)

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef] [PubMed]

D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
[CrossRef]

2002 (1)

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372-1377 (2002).
[CrossRef] [PubMed]

2001 (2)

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

1998 (1)

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr., T 76, 127-137 (1998).
[CrossRef]

1997 (1)

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

1996 (2)

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, “A Schrödinger cat superposition state of an atom,” Science 272, 1131-1136 (1996).
[CrossRef] [PubMed]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

1989 (1)

G. S. Agarwal and R. R. Puri, “Quantum theory of propagation of elliptically polarized light through a Kerr medium,” Phys. Rev. A 40, 5179-5186 (1989).
[CrossRef] [PubMed]

1965 (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, 195-290 (1965).

1963 (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89-109 (1963).
[CrossRef]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Agarwal, G. S.

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef] [PubMed]

G. S. Agarwal and R. R. Puri, “Quantum theory of propagation of elliptically polarized light through a Kerr medium,” Phys. Rev. A 40, 5179-5186 (1989).
[CrossRef] [PubMed]

Andersson, E.

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

Bell, J. S.

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, 195-290 (1965).

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Bernu, J.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Bertet, P.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

Bosland, P.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Browne, D. E.

D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
[CrossRef]

Brune, M.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

Corbalan, R.

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Cummings, F. W.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89-109 (1963).
[CrossRef]

Delglise, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372-1377 (2002).
[CrossRef] [PubMed]

Dreyer, J.

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

Eckert, K.

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Gleyzes, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Gong, Q. H.

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Effective generation of polarization-entangled photon pairs in a cavity-QED system,” Phys. Lett. A 372, 5959-5963 (2008).
[CrossRef]

Grover, L. K.

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

Gu, Y.

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Effective generation of polarization-entangled photon pairs in a cavity-QED system,” Phys. Lett. A 372, 5959-5963 (2008).
[CrossRef]

Guerlin, C.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Guo, G. C.

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Effective generation of polarization-entangled photon pairs in a cavity-QED system,” Phys. Lett. A 372, 5959-5963 (2008).
[CrossRef]

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

Hagley, E.

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

Haroche, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

Hoff, U. B.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Jacques, E.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Jaynes, E. T.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89-109 (1963).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023-1030 (2008).
[CrossRef]

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr., T 76, 127-137 (1998).
[CrossRef]

King, B. E.

C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, “A Schrödinger cat superposition state of an atom,” Science 272, 1131-1136 (1996).
[CrossRef] [PubMed]

Kuhn, A.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488-490 (2007).
[CrossRef] [PubMed]

Kuhr, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Larson, J.

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

Li, P. B.

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Effective generation of polarization-entangled photon pairs in a cavity-QED system,” Phys. Lett. A 372, 5959-5963 (2008).
[CrossRef]

Maali, A.

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

Mabuchi, H.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372-1377 (2002).
[CrossRef] [PubMed]

Maitre, X.

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

Maraver, R. G.

Meekhof, D. M.

C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, “A Schrödinger cat superposition state of an atom,” Science 272, 1131-1136 (1996).
[CrossRef] [PubMed]

Mompart, J.

Monroe, C.

C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, “A Schrödinger cat superposition state of an atom,” Science 272, 1131-1136 (1996).
[CrossRef] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

Nogues, G.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

Osnaghi, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Plenio, M. B.

D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
[CrossRef]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Puri, R. R.

G. S. Agarwal and R. R. Puri, “Quantum theory of propagation of elliptically polarized light through a Kerr medium,” Phys. Rev. A 40, 5179-5186 (1989).
[CrossRef] [PubMed]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

Raimondb, J.-M.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Rauschenbeutel, A.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

Rempe, G.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488-490 (2007).
[CrossRef] [PubMed]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).

Shor, P. W.

P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science(IEEE, 1994), p. 116.

Shu, J.

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

Solano, E.

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef] [PubMed]

Visentin, B.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

Walther, H.

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef] [PubMed]

Webster, S. C.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488-490 (2007).
[CrossRef] [PubMed]

Wilk, T.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488-490 (2007).
[CrossRef] [PubMed]

Wineland, D. J.

C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, “A Schrödinger cat superposition state of an atom,” Science 272, 1131-1136 (1996).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Wunderlich, C.

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

Xiao, Y. F.

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

Zou, X. B.

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).

Appl. Phys. Lett. (1)

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Delglise, S. Osnaghi, M. Brune, J.-M. Raimondb, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry-Perot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) (1)

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023-1030 (2008).
[CrossRef]

Phys. Lett. A (1)

P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Effective generation of polarization-entangled photon pairs in a cavity-QED system,” Phys. Lett. A 372, 5959-5963 (2008).
[CrossRef]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Phys. Rev. A (5)

J. Shu, X. B. Zou, Y. F. Xiao, and G. C. Guo, “Generating four-mode multiphoton entangled states in cavity QED,” Phys. Rev. A 74, 044301 (2006).
[CrossRef]

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

G. S. Agarwal and R. R. Puri, “Quantum theory of propagation of elliptically polarized light through a Kerr medium,” Phys. Rev. A 40, 5179-5186 (1989).
[CrossRef] [PubMed]

D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
[CrossRef]

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

Phys. Rev. Lett. (5)

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef] [PubMed]

M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the meter in a quantum measurement,” Phys. Rev. Lett. 77, 4887-4890 (1996).
[CrossRef] [PubMed]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Phys. Scr., T (1)

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr., T 76, 127-137 (1998).
[CrossRef]

Physics (Long Island City, N.Y.) (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, 195-290 (1965).

Proc. IEEE (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89-109 (1963).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

Science (3)

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372-1377 (2002).
[CrossRef] [PubMed]

C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, “A Schrödinger cat superposition state of an atom,” Science 272, 1131-1136 (1996).
[CrossRef] [PubMed]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488-490 (2007).
[CrossRef] [PubMed]

Other (3)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science(IEEE, 1994), p. 116.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Proposed experimental setup. A two-level atom sequentially couples to two distant cavities A and B, driven by a strong classical field.

Fig. 2
Fig. 2

(a) Time-dependent coupling strengths g A ( t ) , g B ( t ) . The parameters are g A g B = 40 Γ , w A v = 0.02 Γ 1 , w b v = 0.045 Γ 1 , t 1 = 0.05 Γ 1 , and t 2 = 0.25 Γ 1 . (b) Coherent evolution of the system with the effective Hamiltonian [Eq. (9)] from the initial state + 0 A 0 B .

Fig. 3
Fig. 3

Variation of the fidelity versus δ t t . Parameters are chosen as in Fig. 2.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

H j = ω 0 σ σ + ν j a ̂ j a ̂ j + Ω j ( e i ω L t σ + e i ω L t σ ) + g j ( σ a ̂ j + σ a ̂ j ) , ( j = A , B )
H j L = Δ σ σ + δ j a ̂ j a ̂ j + Ω j ( σ + σ ) + g j ( σ a ̂ j + σ a ̂ j ) , ( j = A , B )
H j I = g j 2 ( + + + e 2 i Ω j t + e 2 i Ω j t + ) a ̂ j e i δ j t + H.c.
H j I = g j 2 ( + + ) ( a ̂ j e i δ j t + a ̂ j e i δ j t ) = g j 2 ( σ + σ ) ( a ̂ j e i δ j t + a ̂ j e i δ j t ) .
U j ( t ) = e i H j I t = e i g j t 2 ( σ + σ ) ( a ̂ j + a ̂ j ) = D ̂ ( α j ) + + + D ̂ ( α j ) ,
1 2 ( + α A + α A ) 0 B ,
1 2 ( + α A β B + α A β B ) ,
N A B ± ( α A β B ± α A β B ) ,
H j J C = g j 2 ( + a ̂ j + + a j ̂ ) .
1 2 ( + 0 A i 1 A ) 0 B .
1 2 ( cos ( g B t 2 ) + 0 B i sin ( g B t 2 ) 1 B ) 0 A i 2 1 A 0 B .
1 2 ( 0 A 1 B ± 1 A 0 B ) ,
1 2 ( 0 A 1 B ± 1 A 0 B ) .
H B AJC = g B 2 ( + a ̂ B + + a ̂ B ) .
1 2 0 A 0 B i 2 ( cos ( g B t 2 ) 0 B i sin ( g B t 2 ) + 1 B ) 1 A .
1 2 ( 0 A 0 B 1 A 1 B ) + .
1 2 ( 0 A 0 B ± 1 A 1 B ) .

Metrics