Abstract

A kind of Au nanoparticle (NP) containing 2D hexagonal mesoporous TiO2 thin films (MTTFs) has been successfully synthesized through a deposition–precipitation method. The Au NPs show uniform size distribution and the Au content within the MTTFs is measured to be 7.49wt.%. The third-order nonlinear optical refractive index of the Au NPs contained MTTFs has been measured by the Z-scan technique at 1064nm. The absolute value of nonlinear refractive index (n2) and third-order nonlinear susceptibility (χ(3)) were calculated to be 2.64×107 and 6.32×108esu, respectively. The high nonlinearity of the composite thin films can be attributed to the intraband transition of electrons near the Fermi surface in well-dispersed Au NPs confined in mesoporous channels and the high linear refractive index of the nanocrystalline anatase framework.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Chen and D. W. Goodman, “The structure of catalytically active gold on titania,” Science 306, 252-255 (2004).
    [CrossRef] [PubMed]
  2. M. Jakob, H. Levanon, and P. V. Kamat, “Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level,” Nano Lett. 3, 353-358 (2003).
    [CrossRef]
  3. J. Chou and E. W. McFarland, “Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania,” Chem. Commun. (Cambridge) 2004, 1648-1649 (2004).
    [CrossRef]
  4. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1820 (1998).
    [CrossRef]
  5. S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
    [CrossRef]
  6. C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).
  7. M. Kyoung and M. Lee, “Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2,” Bull. Korean Chem. Soc. 21, 26-28 (2000).
  8. G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Phys. Lett. A 306, 348-352 (2003).
    [CrossRef]
  9. Y. Yang, J. Shi, S. Dai, X. Zhao, and X. Wang, “High third-order non-resonant optical nonlinearity of surface modified CdS quantum dots embedded in BaTiO3,” Thin Solid Films 437, 217-222 (2003).
    [CrossRef]
  10. Y. Yang, J. Shi, H. Chen, S. Dai, and Y. Liu, “Enhanced off-resonant optical nonlinearity of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films,” Chem. Phys. Lett. 370, 1-6 (2003).
    [CrossRef]
  11. P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002).
    [CrossRef]
  12. D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
    [CrossRef]
  13. E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003).
    [CrossRef] [PubMed]
  14. Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110242-249 (2007).
    [CrossRef]
  15. K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, and G. D. Stucky, “Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications,” Adv. Funct. Mater. 13, 301-306 (2003).
    [CrossRef]
  16. R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, “Alternative methods for the preparation of gold nanoparticles supported on TiO2,” J. Phys. Chem. B 106, 7634-7642 (2002).
    [CrossRef]
  17. E. E. Stangland, B. Taylor, R. P. Andres, and W. Nicholas Delgass, “Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2: effects of support, neutralizing agent, and pretreatment,” J. Phys. Chem. B 109, 2321-2330 (2005).
    [CrossRef]
  18. H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
    [CrossRef]
  19. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11, 2813-2826 (1999).
    [CrossRef]
  20. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998).
    [CrossRef]
  21. L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, and A. Zukal, “Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures,” J. Phys. Chem. B 104, 12012-12020 (2000).
    [CrossRef]
  22. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410-8426 (1999).
    [CrossRef]
  23. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ=1064 nm,” Phys. Status Solidi B 241, 935-944 (2004).
    [CrossRef]
  24. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi B 238, R5-R7 (2003).
    [CrossRef]
  25. J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
    [CrossRef]
  26. A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
    [CrossRef]

2007

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110242-249 (2007).
[CrossRef]

2005

J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
[CrossRef]

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).

E. E. Stangland, B. Taylor, R. P. Andres, and W. Nicholas Delgass, “Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2: effects of support, neutralizing agent, and pretreatment,” J. Phys. Chem. B 109, 2321-2330 (2005).
[CrossRef]

2004

H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
[CrossRef]

M. S. Chen and D. W. Goodman, “The structure of catalytically active gold on titania,” Science 306, 252-255 (2004).
[CrossRef] [PubMed]

J. Chou and E. W. McFarland, “Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania,” Chem. Commun. (Cambridge) 2004, 1648-1649 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ=1064 nm,” Phys. Status Solidi B 241, 935-944 (2004).
[CrossRef]

2003

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi B 238, R5-R7 (2003).
[CrossRef]

A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
[CrossRef]

K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, and G. D. Stucky, “Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications,” Adv. Funct. Mater. 13, 301-306 (2003).
[CrossRef]

M. Jakob, H. Levanon, and P. V. Kamat, “Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level,” Nano Lett. 3, 353-358 (2003).
[CrossRef]

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Phys. Lett. A 306, 348-352 (2003).
[CrossRef]

Y. Yang, J. Shi, S. Dai, X. Zhao, and X. Wang, “High third-order non-resonant optical nonlinearity of surface modified CdS quantum dots embedded in BaTiO3,” Thin Solid Films 437, 217-222 (2003).
[CrossRef]

Y. Yang, J. Shi, H. Chen, S. Dai, and Y. Liu, “Enhanced off-resonant optical nonlinearity of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films,” Chem. Phys. Lett. 370, 1-6 (2003).
[CrossRef]

E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003).
[CrossRef] [PubMed]

2002

P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002).
[CrossRef]

R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, “Alternative methods for the preparation of gold nanoparticles supported on TiO2,” J. Phys. Chem. B 106, 7634-7642 (2002).
[CrossRef]

2001

D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
[CrossRef]

2000

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

M. Kyoung and M. Lee, “Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2,” Bull. Korean Chem. Soc. 21, 26-28 (2000).

L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, and A. Zukal, “Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures,” J. Phys. Chem. B 104, 12012-12020 (2000).
[CrossRef]

1999

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11, 2813-2826 (1999).
[CrossRef]

1998

D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998).
[CrossRef]

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1820 (1998).
[CrossRef]

Alberius, P. C. A.

P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002).
[CrossRef]

Albouy, P.-A.

D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
[CrossRef]

Andres, R. P.

E. E. Stangland, B. Taylor, R. P. Andres, and W. Nicholas Delgass, “Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2: effects of support, neutralizing agent, and pretreatment,” J. Phys. Chem. B 109, 2321-2330 (2005).
[CrossRef]

Babonneau, F.

D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
[CrossRef]

Balkenende, A. R.

D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
[CrossRef]

Brunet-Bruneau, A.

D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
[CrossRef]

Cagnol, F.

E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003).
[CrossRef] [PubMed]

Chen, B.

H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
[CrossRef]

Chen, H.

Y. Yang, J. Shi, H. Chen, S. Dai, and Y. Liu, “Enhanced off-resonant optical nonlinearity of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films,” Chem. Phys. Lett. 370, 1-6 (2003).
[CrossRef]

Chen, H.-R.

J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
[CrossRef]

Chen, M. S.

M. S. Chen and D. W. Goodman, “The structure of catalytically active gold on titania,” Science 306, 252-255 (2004).
[CrossRef] [PubMed]

Cheong, B.-k.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Chmelka, B. F.

P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002).
[CrossRef]

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11, 2813-2826 (1999).
[CrossRef]

D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998).
[CrossRef]

Cho, S.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Chou, J.

J. Chou and E. W. McFarland, “Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania,” Chem. Commun. (Cambridge) 2004, 1648-1649 (2004).
[CrossRef]

Chung, M.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Coakley, K. M.

K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, and G. D. Stucky, “Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications,” Adv. Funct. Mater. 13, 301-306 (2003).
[CrossRef]

Crepaldi, E. L.

E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003).
[CrossRef] [PubMed]

Dai, S.

H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
[CrossRef]

Y. Yang, J. Shi, H. Chen, S. Dai, and Y. Liu, “Enhanced off-resonant optical nonlinearity of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films,” Chem. Phys. Lett. 370, 1-6 (2003).
[CrossRef]

Y. Yang, J. Shi, S. Dai, X. Zhao, and X. Wang, “High third-order non-resonant optical nonlinearity of surface modified CdS quantum dots embedded in BaTiO3,” Thin Solid Films 437, 217-222 (2003).
[CrossRef]

Delgass, W. Nicholas

E. E. Stangland, B. Taylor, R. P. Andres, and W. Nicholas Delgass, “Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2: effects of support, neutralizing agent, and pretreatment,” J. Phys. Chem. B 109, 2321-2330 (2005).
[CrossRef]

Elim, H. I.

A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

Feng, J.

D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998).
[CrossRef]

Frindell, K. L.

K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, and G. D. Stucky, “Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications,” Adv. Funct. Mater. 13, 301-306 (2003).
[CrossRef]

P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ=1064 nm,” Phys. Status Solidi B 241, 935-944 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi B 238, R5-R7 (2003).
[CrossRef]

Giorgio, S.

R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, “Alternative methods for the preparation of gold nanoparticles supported on TiO2,” J. Phys. Chem. B 106, 7634-7642 (2002).
[CrossRef]

Goodman, D. W.

M. S. Chen and D. W. Goodman, “The structure of catalytically active gold on titania,” Science 306, 252-255 (2004).
[CrossRef] [PubMed]

Grätzel, M.

L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, and A. Zukal, “Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures,” J. Phys. Chem. B 104, 12012-12020 (2000).
[CrossRef]

Grosso, D.

E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003).
[CrossRef] [PubMed]

D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
[CrossRef]

Gu, J.-L.

J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
[CrossRef]

Hayward, R. C.

P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002).
[CrossRef]

He, J.

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Phys. Lett. A 306, 348-352 (2003).
[CrossRef]

Henry, C. R.

R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, “Alternative methods for the preparation of gold nanoparticles supported on TiO2,” J. Phys. Chem. B 106, 7634-7642 (2002).
[CrossRef]

Hua, Z.-L.

J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
[CrossRef]

Jakob, M.

M. Jakob, H. Levanon, and P. V. Kamat, “Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level,” Nano Lett. 3, 353-358 (2003).
[CrossRef]

Ji, W.

A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
[CrossRef]

Kamat, P. V.

M. Jakob, H. Levanon, and P. V. Kamat, “Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level,” Nano Lett. 3, 353-358 (2003).
[CrossRef]

Kavan, L.

L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, and A. Zukal, “Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures,” J. Phys. Chem. B 104, 12012-12020 (2000).
[CrossRef]

Kim, S. G.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Kim, W. M.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Kramer, E. J.

P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002).
[CrossRef]

Kyoung, M.

M. Kyoung and M. Lee, “Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2,” Bull. Korean Chem. Soc. 21, 26-28 (2000).

Lee, B.

H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
[CrossRef]

Lee, M.

M. Kyoung and M. Lee, “Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2,” Bull. Korean Chem. Soc. 21, 26-28 (2000).

Lee, S.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Lee, T. S.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Levanon, H.

M. Jakob, H. Levanon, and P. V. Kamat, “Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level,” Nano Lett. 3, 353-358 (2003).
[CrossRef]

Li, B.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).

Li, J.

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110242-249 (2007).
[CrossRef]

Li, Y.

A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
[CrossRef]

Liao, H. B.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1820 (1998).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

Liu, Y.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).

K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, and G. D. Stucky, “Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications,” Adv. Funct. Mater. 13, 301-306 (2003).
[CrossRef]

Y. Yang, J. Shi, H. Chen, S. Dai, and Y. Liu, “Enhanced off-resonant optical nonlinearity of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films,” Chem. Phys. Lett. 370, 1-6 (2003).
[CrossRef]

Louis, C.

R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, “Alternative methods for the preparation of gold nanoparticles supported on TiO2,” J. Phys. Chem. B 106, 7634-7642 (2002).
[CrossRef]

Ma, G.

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Phys. Lett. A 306, 348-352 (2003).
[CrossRef]

Mahurin, S. M.

H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
[CrossRef]

Margolese, D. I.

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11, 2813-2826 (1999).
[CrossRef]

McFarland, E. W.

J. Chou and E. W. McFarland, “Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania,” Chem. Commun. (Cambridge) 2004, 1648-1649 (2004).
[CrossRef]

McGehee, M. D.

K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, and G. D. Stucky, “Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications,” Adv. Funct. Mater. 13, 301-306 (2003).
[CrossRef]

Melosh, N.

D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998).
[CrossRef]

Oh, S.-g.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Overbury, S. H.

H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
[CrossRef]

Pan, Z.

H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
[CrossRef]

Park, S. J.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Qian, S.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).

Qian, S.-X.

J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
[CrossRef]

Rathouský, J.

L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, and A. Zukal, “Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures,” J. Phys. Chem. B 104, 12012-12020 (2000).
[CrossRef]

Ribot, F.

E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003).
[CrossRef] [PubMed]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ=1064 nm,” Phys. Status Solidi B 241, 935-944 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi B 238, R5-R7 (2003).
[CrossRef]

Sanchez, C.

E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003).
[CrossRef] [PubMed]

D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
[CrossRef]

Shi, J.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).

Y. Yang, J. Shi, S. Dai, X. Zhao, and X. Wang, “High third-order non-resonant optical nonlinearity of surface modified CdS quantum dots embedded in BaTiO3,” Thin Solid Films 437, 217-222 (2003).
[CrossRef]

Y. Yang, J. Shi, H. Chen, S. Dai, and Y. Liu, “Enhanced off-resonant optical nonlinearity of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films,” Chem. Phys. Lett. 370, 1-6 (2003).
[CrossRef]

Shi, J.-L.

J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
[CrossRef]

Shklover, V.

L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, and A. Zukal, “Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures,” J. Phys. Chem. B 104, 12012-12020 (2000).
[CrossRef]

Soler-Illia, G. J. de A. A.

E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003).
[CrossRef] [PubMed]

D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
[CrossRef]

Song, K. B.

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Stangland, E. E.

E. E. Stangland, B. Taylor, R. P. Andres, and W. Nicholas Delgass, “Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2: effects of support, neutralizing agent, and pretreatment,” J. Phys. Chem. B 109, 2321-2330 (2005).
[CrossRef]

Stepanov, A. L.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ=1064 nm,” Phys. Status Solidi B 241, 935-944 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi B 238, R5-R7 (2003).
[CrossRef]

Stucky, G. D.

K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, and G. D. Stucky, “Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications,” Adv. Funct. Mater. 13, 301-306 (2003).
[CrossRef]

P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002).
[CrossRef]

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11, 2813-2826 (1999).
[CrossRef]

D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998).
[CrossRef]

Tang, S.-H.

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Phys. Lett. A 306, 348-352 (2003).
[CrossRef]

Taylor, B.

E. E. Stangland, B. Taylor, R. P. Andres, and W. Nicholas Delgass, “Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2: effects of support, neutralizing agent, and pretreatment,” J. Phys. Chem. B 109, 2321-2330 (2005).
[CrossRef]

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ=1064 nm,” Phys. Status Solidi B 241, 935-944 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi B 238, R5-R7 (2003).
[CrossRef]

Wang, H.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1820 (1998).
[CrossRef]

Wang, J.

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110242-249 (2007).
[CrossRef]

A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
[CrossRef]

Wang, X.

Y. Yang, J. Shi, S. Dai, X. Zhao, and X. Wang, “High third-order non-resonant optical nonlinearity of surface modified CdS quantum dots embedded in BaTiO3,” Thin Solid Films 437, 217-222 (2003).
[CrossRef]

White, T. J.

A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
[CrossRef]

Wong, G. K. L.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1820 (1998).
[CrossRef]

Wong, K. S.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1820 (1998).
[CrossRef]

Xiao, R. F.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1820 (1998).
[CrossRef]

Xiong, L.-M.

J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
[CrossRef]

Xue, J.

A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
[CrossRef]

Yang, P.

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11, 2813-2826 (1999).
[CrossRef]

D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998).
[CrossRef]

Yang, Y.

Y. Yang, J. Shi, S. Dai, X. Zhao, and X. Wang, “High third-order non-resonant optical nonlinearity of surface modified CdS quantum dots embedded in BaTiO3,” Thin Solid Films 437, 217-222 (2003).
[CrossRef]

Y. Yang, J. Shi, H. Chen, S. Dai, and Y. Liu, “Enhanced off-resonant optical nonlinearity of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films,” Chem. Phys. Lett. 370, 1-6 (2003).
[CrossRef]

You, G.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).

You, G.-J.

J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
[CrossRef]

Yuwono, A. H.

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110242-249 (2007).
[CrossRef]

A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
[CrossRef]

Zanella, R.

R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, “Alternative methods for the preparation of gold nanoparticles supported on TiO2,” J. Phys. Chem. B 106, 7634-7642 (2002).
[CrossRef]

Zhang, C.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).

Zhang, Y.

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110242-249 (2007).
[CrossRef]

Zhao, D.

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11, 2813-2826 (1999).
[CrossRef]

D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998).
[CrossRef]

Zhao, X.

Y. Yang, J. Shi, S. Dai, X. Zhao, and X. Wang, “High third-order non-resonant optical nonlinearity of surface modified CdS quantum dots embedded in BaTiO3,” Thin Solid Films 437, 217-222 (2003).
[CrossRef]

Zhu, H.

H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
[CrossRef]

Zukal, A.

L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, and A. Zukal, “Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures,” J. Phys. Chem. B 104, 12012-12020 (2000).
[CrossRef]

Adv. Funct. Mater.

K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, and G. D. Stucky, “Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications,” Adv. Funct. Mater. 13, 301-306 (2003).
[CrossRef]

Adv. Mater. (Weinheim, Ger.)

D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, “Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels,” Adv. Mater. (Weinheim, Ger.) 13, 1085-1090 (2001).
[CrossRef]

D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, “Continuous mesoporous silica films with highly ordered large pore structures,” Adv. Mater. (Weinheim, Ger.) 10, 1380-1385 (1998).
[CrossRef]

J.-L. Gu, J.-L. Shi, G.-J. You, L.-M. Xiong, S.-X. Qian, Z.-L. Hua, and H.-R. Chen, “Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response,” Adv. Mater. (Weinheim, Ger.) 17, 557-560 (2005).
[CrossRef]

Appl. Phys. Lett.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1820 (1998).
[CrossRef]

Bull. Korean Chem. Soc.

M. Kyoung and M. Lee, “Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2,” Bull. Korean Chem. Soc. 21, 26-28 (2000).

Chem. Commun. (Cambridge)

J. Chou and E. W. McFarland, “Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania,” Chem. Commun. (Cambridge) 2004, 1648-1649 (2004).
[CrossRef]

Chem. Mater.

P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, “General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films,” Chem. Mater. 14, 3284-3294 (2002).
[CrossRef]

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11, 2813-2826 (1999).
[CrossRef]

Chem. Phys. Lett.

Y. Yang, J. Shi, H. Chen, S. Dai, and Y. Liu, “Enhanced off-resonant optical nonlinearity of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films,” Chem. Phys. Lett. 370, 1-6 (2003).
[CrossRef]

J. Am. Chem. Soc.

E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770-9786 (2003).
[CrossRef] [PubMed]

J. Mater. Chem.

A. H. Yuwono, J. Xue, J. Wang, H. I. Elim, W. Ji, Y. Li, and T. J. White, “Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior,” J. Mater. Chem. 13, 1475-1479 (2003).
[CrossRef]

J. Phys. Chem. B

L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, and A. Zukal, “Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures,” J. Phys. Chem. B 104, 12012-12020 (2000).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410-8426 (1999).
[CrossRef]

R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, “Alternative methods for the preparation of gold nanoparticles supported on TiO2,” J. Phys. Chem. B 106, 7634-7642 (2002).
[CrossRef]

E. E. Stangland, B. Taylor, R. P. Andres, and W. Nicholas Delgass, “Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2: effects of support, neutralizing agent, and pretreatment,” J. Phys. Chem. B 109, 2321-2330 (2005).
[CrossRef]

H. Zhu, Z. Pan, B. Chen, B. Lee, S. M. Mahurin, S. H. Overbury, and S. Dai, “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” J. Phys. Chem. B 108, 2038-2044 (2004).
[CrossRef]

Microporous Mesoporous Mater.

Y. Zhang, A. H. Yuwono, J. Li, and J. Wang, “Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration,” Microporous Mesoporous Mater. 110242-249 (2007).
[CrossRef]

Nano Lett.

M. Jakob, H. Levanon, and P. V. Kamat, “Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level,” Nano Lett. 3, 353-358 (2003).
[CrossRef]

Phys. Lett. A

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Phys. Lett. A 306, 348-352 (2003).
[CrossRef]

Phys. Status Solidi B

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ=1064 nm,” Phys. Status Solidi B 241, 935-944 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range,” Phys. Status Solidi B 238, R5-R7 (2003).
[CrossRef]

Physica B

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334-339 (2005).

Science

M. S. Chen and D. W. Goodman, “The structure of catalytically active gold on titania,” Science 306, 252-255 (2004).
[CrossRef] [PubMed]

Thin Solid Films

S. Cho, S. Lee, S.-g. Oh, S. J. Park, W. M. Kim, B.-k. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films 377-378, 97-102 (2000).
[CrossRef]

Y. Yang, J. Shi, S. Dai, X. Zhao, and X. Wang, “High third-order non-resonant optical nonlinearity of surface modified CdS quantum dots embedded in BaTiO3,” Thin Solid Films 437, 217-222 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SAXRD patterns of as-prepared MTTFs (curve a) and Au–MTTFs (curve b).

Fig. 2
Fig. 2

TEM images of (a) as-prepared MTTFs; (b) Au–MTTFs, and selective area electron diffraction (SAED) patterns of (c) as-prepared MTTFs; (d) Au–MTTFs.

Fig. 3
Fig. 3

EDS spectrum of Au–MTTFs.

Fig. 4
Fig. 4

UV-vis absorption spectra of (a) blank MTTFs and (b) Au–MTTFs.

Fig. 5
Fig. 5

Z-scan traces of Au–MTTFs with a laser wavelength of 1064 nm , pulse duration of 40 ps , and frequency of 10 Hz . (a) Closed aperture; (b) open aperture.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ T p v = 0.406 ( 1 S ) 0.25 Δ Φ 0 ,
Δ Φ 0 = 2 π λ Δ n 0 [ ( 1 T ) L ln T ] ,
n 2 = Δ n 0 n 0 C μ I ,

Metrics