Abstract

We have proposed an ultracompact all-optical photonic crystal AND gate based on nonlinear ring resonators, consisting of two Kerr nonlinear photonic crystal ring resonators inserted between three parallel line defects. We have employed a Si nanocrystal as the nonlinear material for its appropriate nonlinear properties. The gate has been simulated and analyzed by finite difference time domain and plane wave expansion methods. The proposed logic gate can operate with a bit rate of about 120Gbitss.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun. 262, 32-37 (2006).
    [CrossRef]
  2. A. Rostami and G. Rostami, “Full optical analog to digital (A/D) converter based on Kerr-like nonlinear ring resonator,” Opt. Commun. 228, 39-48 (2003).
    [CrossRef]
  3. K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551-565 (2008).
    [CrossRef]
  4. Y.-D. Wu, T.-T. Shih, and M.-H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16, 248-257 (2008).
    [CrossRef] [PubMed]
  5. S. Pereira, P. Chak, and J. E. Sipe, “All-optical AND gate by use of a Kerr nonlinear microresonator structure,” Opt. Lett. 28, 444-446 (2003).
    [CrossRef] [PubMed]
  6. Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033-1038 (2005).
    [CrossRef] [PubMed]
  7. M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731-739 (2005).
    [CrossRef]
  8. Y. Dumeige, L. Ghisa, P. Féron, and Y. Dumeige, “Integrated all-optical pulse restoration with coupled nonlinear microring resonators,” Opt. Lett. 31, 2187-2189 (2006).
    [CrossRef] [PubMed]
  9. T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P.-T. Ho, “Photonic logic NOR gate based on two symmetric microring resonators,” Opt. Lett. 29, 2779-2781 (2004).
    [CrossRef] [PubMed]
  10. C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862-863 (2004).
    [CrossRef]
  11. C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, and L. Shutian, “Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium,” Opt. Commun. 209, 491-500 (2002).
    [CrossRef]
  12. T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23, 684-691 (2006).
    [CrossRef]
  13. D. V. Novistisky and S. Y. Mikhnevich, “Bistable behavior of reflection and transmission of a one-dimensional photonic crystal with a dense resonant medium as defect,” J. Opt. Soc. Am. B 25, 1362-1370 (2008).
    [CrossRef]
  14. M. G. Banaee, A. R. Cowan, and J. F. Young, “Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystal,” J. Opt. Soc. Am. B 19, 2224-2231 (2002).
    [CrossRef]
  15. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241-2249 (2002).
    [CrossRef]
  16. A. Kumar and T. Kurz, “Switching between bistable states of a soliton inhomogenously doped fiber coupler,” J. Opt. Soc. Am. B 18, 897-900 (2001).
    [CrossRef]
  17. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
    [CrossRef]
  18. K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376-1380 (2007).
    [CrossRef]
  19. M. F. Yanik and S. Fan, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2508 (2003).
    [CrossRef] [PubMed]
  20. M. F. Yanik and S. Fana, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003).
    [CrossRef]
  21. S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
    [CrossRef]
  22. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678-2687 (2005).
    [CrossRef] [PubMed]
  23. L.-X. Chena and D. Kimb, “A bistable switching of two-dimensional photonic crystal with Kerr point defect,” Opt. Commun. 218, 19-26 (2003).
    [CrossRef]
  24. K. Ogusu and K. Takayama, “Optical bistability in photonic crystal microrings with nonlinear dielectric materials,” Opt. Express 16, 7525-7539 (2008).
    [CrossRef] [PubMed]
  25. H. Xiao and D. Yao, “Optical limitation in two-dimensional nonlinear photonic crystal with triangular lattice,” Phys. Lett. A 359, 723-727 (2006).
    [CrossRef]
  26. D. Pelinovsky, J. Sears, L. Brzozowski, and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. I. Analysis,” J. Opt. Soc. Am. B 19, 43-53 (2002).
    [CrossRef]
  27. D. Pelinovsky and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. II. Computations,” J. Opt. Soc. Am. B 19, 1873-1889 (2002).
    [CrossRef]
  28. W. N. Ye, L. Brzozowski, E. H. Sargent, and D. Pelinovsky, “Stable all-optical limiting in nonlinear periodic structures. III. Nonsolitonic pulse propagation,” J. Opt. Soc. Am. B 20, 695-705 (2003).
    [CrossRef]
  29. H. Zou, G. Q. Liang, and H. Z. Wang, “Efficient all-optical dual channel switches, logic gates, half-adder, and half subtracter in one-dimensional photonic crystal heterostructure,” J. Opt. Soc. Am. B 25, 351-360 (2008).
    [CrossRef]
  30. E. Puddu, A. Allevi, A. Andreoni, and M. Bondani, “All-optical logic operations by means of two interlinked χ(2) interaction in a single crystal,” J. Opt. Soc. Am. B 21, 1839-1847 (2004).
    [CrossRef]
  31. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two dimensional photonic crystal slab,” Opt. Express 14, 1230-1235 (2006).
    [CrossRef] [PubMed]
  32. Z.-H. Zhu, W.-M. Ye, J.-R. Ji, X.-D. Yuan, and C. Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” Opt. Express 14, 1783-1788 (2006).
    [CrossRef] [PubMed]
  33. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic, χ(2), and χ(3) optical effects,” J. Lightwave Technol. 24, 624-634 (2006).
    [CrossRef]
  34. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules,” J. Opt. Soc. Am. B 23, 2434-2440 (2006).
    [CrossRef]
  35. N. C. Panoiu, M. Bahl, and R. M. Osgood, Jr., “Ultrafast optical tuning of a superprism effect in nonlinear photonic crystals,” J. Opt. Soc. Am. B 21, 1500-1508 (2004).
    [CrossRef]
  36. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. C. Magi, D. J. Moss, and B. J. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express 14, 1070-1078 (2006).
    [CrossRef] [PubMed]
  37. E. P. Kosmidou and T. D. Tsiboukis, “An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials,” Opt. Quantum Electron. 35, 931-946 (2003).
    [CrossRef]
  38. A. E. Miroshnichenko and Y. S. Kivshar, “Sharp bends in photonic crystal waveguides as nonlinear Fano resonators,” Opt. Express 13, 3969-3976 (2005).
    [CrossRef] [PubMed]
  39. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
    [CrossRef] [PubMed]
  40. S. Mookherjea and A. Yariv, “Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,” Phys. Rev. E 66, 046610 (2002).
    [CrossRef]
  41. J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
    [CrossRef] [PubMed]
  42. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007).
    [CrossRef]
  43. J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
    [CrossRef] [PubMed]
  44. J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
    [CrossRef]
  45. J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
    [CrossRef] [PubMed]
  46. J. Wang, J. Sun, X. Zhang, D. Liu, and D. Huang, “Proposal and simulation for all-optical format conversion between differential phase-shift keying signals based on cascaded second-order nonlinearities,” Opt. Commun. 281, 5019-5024 (2008).
    [CrossRef]
  47. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
    [CrossRef]
  48. J. Wang, J. Sun, X. Zhang, and D. Huang, “PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals,” Electron. Lett. 44, 413-414 (2008).
    [CrossRef]
  49. I. S. Maksymov, L. F. Marsal, and J. Pallares, “Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals,” Opt. Commun. 239, 213-222 (2004).
    [CrossRef]
  50. Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Qian, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006).
    [CrossRef]
  51. R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003).
    [CrossRef]
  52. J. H. Greene and A. Taflove, “General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics,” Opt. Express 14, 8305-8310 (2006).
    [CrossRef] [PubMed]
  53. A. Taflov and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).
  54. G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
    [CrossRef]
  55. G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
    [CrossRef]
  56. S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
    [CrossRef]
  57. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976-5990 (2007).
    [CrossRef] [PubMed]
  58. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  59. M. Djavid, A. Ghaffari, F. Monifi, and M. S. Abrishamian, “Photonic crystal power dividers using L-shaped based on ring resonators,” J. Opt. Soc. Am. B 25, 1231-1235 (2008).
    [CrossRef]
  60. S. H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951-1959 (2007).
    [CrossRef]
  61. J. K. S. Poon, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665-1673 (2004).
    [CrossRef]
  62. N. C. Panoiu, M. Bahl, and R. M. Osgood, Jr., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12, 1605-1610 (2004).
    [CrossRef] [PubMed]
  63. I. S. Maksymov, L. F. Marsal and J. Pallarès, “An FDTD analysis of nonlinear photonic crystal waveguides,” Opt. Quantum Electron. 38, 149-160 (2006).
    [CrossRef]
  64. J. B. Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljaciić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161-16176 (2007).
    [CrossRef]
  65. Z. Qiang, W. Z. Richard, and A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007).
    [CrossRef] [PubMed]
  66. T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
    [CrossRef]
  67. L. Chen and E. Towe, “Design of high-Q microcavities for proposed two-dimensional electrically pumped photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 117-123 (2006).
    [CrossRef]
  68. S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081-1085 (2003).
    [CrossRef]
  69. Y. Lin and E. Chow, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903-1905 (2001).
    [CrossRef]
  70. J. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769-71 (2004).
    [CrossRef] [PubMed]
  71. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458-17481 (2007).
    [CrossRef] [PubMed]
  72. M. Mazidi and J. G. Mazidi, The 8051 Microcontroller and Embedded Systems (Prentice-Hall, 2000).

2008 (11)

K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551-565 (2008).
[CrossRef]

Y.-D. Wu, T.-T. Shih, and M.-H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16, 248-257 (2008).
[CrossRef] [PubMed]

D. V. Novistisky and S. Y. Mikhnevich, “Bistable behavior of reflection and transmission of a one-dimensional photonic crystal with a dense resonant medium as defect,” J. Opt. Soc. Am. B 25, 1362-1370 (2008).
[CrossRef]

K. Ogusu and K. Takayama, “Optical bistability in photonic crystal microrings with nonlinear dielectric materials,” Opt. Express 16, 7525-7539 (2008).
[CrossRef] [PubMed]

H. Zou, G. Q. Liang, and H. Z. Wang, “Efficient all-optical dual channel switches, logic gates, half-adder, and half subtracter in one-dimensional photonic crystal heterostructure,” J. Opt. Soc. Am. B 25, 351-360 (2008).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Liu, and D. Huang, “Proposal and simulation for all-optical format conversion between differential phase-shift keying signals based on cascaded second-order nonlinearities,” Opt. Commun. 281, 5019-5024 (2008).
[CrossRef]

J. Wang, J. Sun, X. Zhang, and D. Huang, “PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals,” Electron. Lett. 44, 413-414 (2008).
[CrossRef]

M. Djavid, A. Ghaffari, F. Monifi, and M. S. Abrishamian, “Photonic crystal power dividers using L-shaped based on ring resonators,” J. Opt. Soc. Am. B 25, 1231-1235 (2008).
[CrossRef]

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

2007 (10)

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976-5990 (2007).
[CrossRef] [PubMed]

S. H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951-1959 (2007).
[CrossRef]

J. B. Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljaciić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161-16176 (2007).
[CrossRef]

Z. Qiang, W. Z. Richard, and A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007).
[CrossRef] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458-17481 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
[CrossRef] [PubMed]

K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

2006 (16)

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
[CrossRef]

H. Xiao and D. Yao, “Optical limitation in two-dimensional nonlinear photonic crystal with triangular lattice,” Phys. Lett. A 359, 723-727 (2006).
[CrossRef]

C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. C. Magi, D. J. Moss, and B. J. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express 14, 1070-1078 (2006).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two dimensional photonic crystal slab,” Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

Z.-H. Zhu, W.-M. Ye, J.-R. Ji, X.-D. Yuan, and C. Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” Opt. Express 14, 1783-1788 (2006).
[CrossRef] [PubMed]

C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic, χ(2), and χ(3) optical effects,” J. Lightwave Technol. 24, 624-634 (2006).
[CrossRef]

C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules,” J. Opt. Soc. Am. B 23, 2434-2440 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23, 684-691 (2006).
[CrossRef]

W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun. 262, 32-37 (2006).
[CrossRef]

Y. Dumeige, L. Ghisa, P. Féron, and Y. Dumeige, “Integrated all-optical pulse restoration with coupled nonlinear microring resonators,” Opt. Lett. 31, 2187-2189 (2006).
[CrossRef] [PubMed]

Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Qian, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006).
[CrossRef]

J. H. Greene and A. Taflove, “General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics,” Opt. Express 14, 8305-8310 (2006).
[CrossRef] [PubMed]

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

L. Chen and E. Towe, “Design of high-Q microcavities for proposed two-dimensional electrically pumped photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 117-123 (2006).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

I. S. Maksymov, L. F. Marsal and J. Pallarès, “An FDTD analysis of nonlinear photonic crystal waveguides,” Opt. Quantum Electron. 38, 149-160 (2006).
[CrossRef]

2005 (4)

2004 (8)

2003 (8)

S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

W. N. Ye, L. Brzozowski, E. H. Sargent, and D. Pelinovsky, “Stable all-optical limiting in nonlinear periodic structures. III. Nonsolitonic pulse propagation,” J. Opt. Soc. Am. B 20, 695-705 (2003).
[CrossRef]

A. Rostami and G. Rostami, “Full optical analog to digital (A/D) converter based on Kerr-like nonlinear ring resonator,” Opt. Commun. 228, 39-48 (2003).
[CrossRef]

S. Pereira, P. Chak, and J. E. Sipe, “All-optical AND gate by use of a Kerr nonlinear microresonator structure,” Opt. Lett. 28, 444-446 (2003).
[CrossRef] [PubMed]

E. P. Kosmidou and T. D. Tsiboukis, “An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials,” Opt. Quantum Electron. 35, 931-946 (2003).
[CrossRef]

L.-X. Chena and D. Kimb, “A bistable switching of two-dimensional photonic crystal with Kerr point defect,” Opt. Commun. 218, 19-26 (2003).
[CrossRef]

M. F. Yanik and S. Fan, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2508 (2003).
[CrossRef] [PubMed]

M. F. Yanik and S. Fana, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

2002 (9)

D. Pelinovsky, J. Sears, L. Brzozowski, and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. I. Analysis,” J. Opt. Soc. Am. B 19, 43-53 (2002).
[CrossRef]

D. Pelinovsky and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. II. Computations,” J. Opt. Soc. Am. B 19, 1873-1889 (2002).
[CrossRef]

C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, and L. Shutian, “Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium,” Opt. Commun. 209, 491-500 (2002).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

M. G. Banaee, A. R. Cowan, and J. F. Young, “Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystal,” J. Opt. Soc. Am. B 19, 2224-2231 (2002).
[CrossRef]

S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241-2249 (2002).
[CrossRef]

S. Mookherjea and A. Yariv, “Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,” Phys. Rev. E 66, 046610 (2002).
[CrossRef]

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

2001 (2)

Abad, J. B.

Abrishamian, M. S.

Adibi, A.

Allevi, A.

Amarnath, K.

Andreoni, A.

Bahl, M.

Banaee, M. G.

Barrios, C. A.

C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862-863 (2004).
[CrossRef]

Bermel, P.

Bondani, M.

Boyd, R. W.

Brzozowski, L.

Busch, K.

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
[CrossRef]

Cazzanelli, M.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Chak, P.

Chen, L.

L. Chen and E. Towe, “Design of high-Q microcavities for proposed two-dimensional electrically pumped photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 117-123 (2006).
[CrossRef]

Chen, M.-H.

Chen, Z.

Chena, L.-X.

L.-X. Chena and D. Kimb, “A bistable switching of two-dimensional photonic crystal with Kerr point defect,” Opt. Commun. 218, 19-26 (2003).
[CrossRef]

Chow, E.

Cingolani, R.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Cowan, A. R.

da Silva, M. G.

W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun. 262, 32-37 (2006).
[CrossRef]

Daldosso, N.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

De Sario, M.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

De Vittorio, M.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Djavid, M.

D'Orazio, A.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Dumeige, Y.

Eggleton, B. J.

Errico, V.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Fainman, Y.

K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

Fan, S.

Fana, S.

M. F. Yanik and S. Fana, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

Fedeli, J. M.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Fejer, M. M.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

Féron, P.

Fink, Y.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Fraga, W. B.

W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun. 262, 32-37 (2006).
[CrossRef]

Franzo, G.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Franzò, G.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

Freeman, D.

Freude, W.

Fu, L. B.

Fujisawa, T.

Gaburro, Z.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Gan, F.

Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Qian, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006).
[CrossRef]

Garrido, B.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Ghaffari, A.

Ghisa, L.

Greene, J. H.

Grillet, C.

Grover, R.

Hagness, S. C.

A. Taflov and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

Heebner, J.

Hernández, S.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Ho, P.-T.

Huang, D.

J. Wang, J. Sun, X. Zhang, and D. Huang, “PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals,” Electron. Lett. 44, 413-414 (2008).
[CrossRef]

J. Wang, J. Sun, X. Zhang, D. Liu, and D. Huang, “Proposal and simulation for all-optical format conversion between differential phase-shift keying signals based on cascaded second-order nonlinearities,” Opt. Commun. 281, 5019-5024 (2008).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

Iacona, F.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Ibanescu, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Ibrahim, T. A.

Igarashi, K.

K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551-565 (2008).
[CrossRef]

Ikeda, K.

K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

Jacome, L.

Jafarpour, A.

Jeong, S. H.

Ji, J.-R.

Joannopoulos, J. D.

J. B. Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljaciić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161-16176 (2007).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Johnson, S. G.

J. B. Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljaciić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161-16176 (2007).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Jordana, E.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Kawanishi, S.

Khorasani, S.

Kikuchi, K.

K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551-565 (2008).
[CrossRef]

Kim, S.-H.

S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

Kimb, D.

L.-X. Chena and D. Kimb, “A bistable switching of two-dimensional photonic crystal with Kerr point defect,” Opt. Commun. 218, 19-26 (2003).
[CrossRef]

Kira, G.

Kirkpatrick, S.

R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003).
[CrossRef]

Kivshar, Y. S.

Komori, K.

Koos, C.

Koshiba, M.

Kosmidou, E. P.

E. P. Kosmidou and T. D. Tsiboukis, “An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials,” Opt. Quantum Electron. 35, 931-946 (2003).
[CrossRef]

Kumar, A.

Kuo, L. C.

Kuramochi, E.

Kurz, T.

Lamont, M. R. E.

Lebour, Y.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Lee, R. K.

Lee, Y.-H.

S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

Lepeshkin, N. N.

Leuthold, J.

Li, B.

Li, Z.

Liang, G. Q.

Liangcai, C.

C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, and L. Shutian, “Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium,” Opt. Commun. 209, 491-500 (2002).
[CrossRef]

Lin, Y.

Lipson, M.

M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731-739 (2005).
[CrossRef]

Liu, D.

J. Wang, J. Sun, X. Zhang, D. Liu, and D. Huang, “Proposal and simulation for all-optical format conversion between differential phase-shift keying signals based on cascaded second-order nonlinearities,” Opt. Commun. 281, 5019-5024 (2008).
[CrossRef]

Liu, Q.

Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Qian, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006).
[CrossRef]

Lixue, C.

C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, and L. Shutian, “Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium,” Opt. Commun. 209, 491-500 (2002).
[CrossRef]

Luther-Davies, B.

Madden, S.

Magi, E. C.

Mägi, E. C.

Maksymov, I. S.

I. S. Maksymov, L. F. Marsal and J. Pallarès, “An FDTD analysis of nonlinear photonic crystal waveguides,” Opt. Quantum Electron. 38, 149-160 (2006).
[CrossRef]

I. S. Maksymov, L. F. Marsal, and J. Pallares, “Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals,” Opt. Commun. 239, 213-222 (2004).
[CrossRef]

Marrocco, V.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Marsal, L. F.

I. S. Maksymov, L. F. Marsal and J. Pallarès, “An FDTD analysis of nonlinear photonic crystal waveguides,” Opt. Quantum Electron. 38, 149-160 (2006).
[CrossRef]

I. S. Maksymov, L. F. Marsal, and J. Pallares, “Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals,” Opt. Commun. 239, 213-222 (2004).
[CrossRef]

Martínez, A.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Mazidi, J. G.

M. Mazidi and J. G. Mazidi, The 8051 Microcontroller and Embedded Systems (Prentice-Hall, 2000).

Mazidi, M.

M. Mazidi and J. G. Mazidi, The 8051 Microcontroller and Embedded Systems (Prentice-Hall, 2000).

Mclean, D. G.

R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003).
[CrossRef]

Menezes, J. W. M.

W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun. 262, 32-37 (2006).
[CrossRef]

Mi, J.

Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Qian, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006).
[CrossRef]

Mikhnevich, S. Y.

Mingaleev, S. F.

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
[CrossRef]

S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241-2249 (2002).
[CrossRef]

Miroshnichenko, A. E.

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
[CrossRef]

A. E. Miroshnichenko and Y. S. Kivshar, “Sharp bends in photonic crystal waveguides as nonlinear Fano resonators,” Opt. Express 13, 3969-3976 (2005).
[CrossRef] [PubMed]

Mitsugi, S.

Momeni, B.

Monifi, F.

Mookherjea, S.

S. Mookherjea and A. Yariv, “Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,” Phys. Rev. E 66, 046610 (2002).
[CrossRef]

Morita, M.

Moss, D. J.

Nguyen, H. C.

Notomi, M.

Novistisky, D. V.

Ogusu, K.

Okano, M.

Osgood, R. M.

Pallares, J.

I. S. Maksymov, L. F. Marsal, and J. Pallares, “Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals,” Opt. Commun. 239, 213-222 (2004).
[CrossRef]

Pallarès, J.

I. S. Maksymov, L. F. Marsal and J. Pallarès, “An FDTD analysis of nonlinear photonic crystal waveguides,” Opt. Quantum Electron. 38, 149-160 (2006).
[CrossRef]

Panoiu, N. C.

Passaseo, A.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Pavesi, L.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Pelinovsky, D.

Pellegrino, P.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Pereira, S.

Petruzzelli, V.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Poon, J. K. S.

Poulton, C.

Prakash, G. Vijaya

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Priolo, F.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Prudenzano, F.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Puddu, E.

Qian, S.

Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Qian, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006).
[CrossRef]

Qiang, Z.

Reinke, C. M.

Richard, W. Z.

Rodriguez, A.

Rostami, A.

A. Rostami and G. Rostami, “Full optical analog to digital (A/D) converter based on Kerr-like nonlinear ring resonator,” Opt. Commun. 228, 39-48 (2003).
[CrossRef]

Rostami, G.

A. Rostami and G. Rostami, “Full optical analog to digital (A/D) converter based on Kerr-like nonlinear ring resonator,” Opt. Commun. 228, 39-48 (2003).
[CrossRef]

Salhi, A.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Sargent, E. H.

Schweinsberg, A.

Sears, J.

Shih, T.-T.

Shinya, A.

Shutian, L.

C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, and L. Shutian, “Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium,” Opt. Commun. 209, 491-500 (2002).
[CrossRef]

Sipe, J. E.

Smith, C.

Sobrinho, C. S.

W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun. 262, 32-37 (2006).
[CrossRef]

Soljacic, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Soljaciic, M.

Soltani, M.

Sombra, A. S. B.

W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun. 262, 32-37 (2006).
[CrossRef]

Soref, A.

Spano, R.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Stomeo, T.

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Sugisaka, J.

Sun, J.

J. Wang, J. Sun, X. Zhang, and D. Huang, “PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals,” Electron. Lett. 44, 413-414 (2008).
[CrossRef]

J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Liu, and D. Huang, “Proposal and simulation for all-optical format conversion between differential phase-shift keying signals based on cascaded second-order nonlinearities,” Opt. Commun. 281, 5019-5024 (2008).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

Sun, Q.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

Sutherland, R. L.

R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003).
[CrossRef]

Taflov, A.

A. Taflov and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

Taflove, A.

Takara, H.

Takayama, K.

Tanabe, T.

Taniyama, H.

Towe, E.

L. Chen and E. Towe, “Design of high-Q microcavities for proposed two-dimensional electrically pumped photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 117-123 (2006).
[CrossRef]

Tsiboukis, T. D.

E. P. Kosmidou and T. D. Tsiboukis, “An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials,” Opt. Quantum Electron. 35, 931-946 (2003).
[CrossRef]

Van, V.

Vijaya Prakash, G.

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

Wang, D.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

Wang, H. Z.

Wang, J.

J. Wang, J. Sun, X. Zhang, and D. Huang, “PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals,” Electron. Lett. 44, 413-414 (2008).
[CrossRef]

J. Wang, J. Sun, X. Zhang, D. Liu, and D. Huang, “Proposal and simulation for all-optical format conversion between differential phase-shift keying signals based on cascaded second-order nonlinearities,” Opt. Commun. 281, 5019-5024 (2008).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

Weiqiang, D.

C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, and L. Shutian, “Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium,” Opt. Commun. 209, 491-500 (2002).
[CrossRef]

Wicks, G. W.

Wu, Y.-D.

Xiao, H.

H. Xiao and D. Yao, “Optical limitation in two-dimensional nonlinear photonic crystal with triangular lattice,” Phys. Lett. A 359, 723-727 (2006).
[CrossRef]

Xiaoxu, D.

C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, and L. Shutian, “Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium,” Opt. Commun. 209, 491-500 (2002).
[CrossRef]

Xu, Y.

Yamamoto, N.

Yanik, M. F.

M. F. Yanik and S. Fana, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

M. F. Yanik and S. Fan, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2508 (2003).
[CrossRef] [PubMed]

Yao, D.

H. Xiao and D. Yao, “Optical limitation in two-dimensional nonlinear photonic crystal with triangular lattice,” Phys. Lett. A 359, 723-727 (2006).
[CrossRef]

Yariv, A.

J. K. S. Poon, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665-1673 (2004).
[CrossRef]

S. Mookherjea and A. Yariv, “Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,” Phys. Rev. E 66, 046610 (2002).
[CrossRef]

Ye, W. N.

Ye, W.-M.

Yeom, D. I.

Yokohama, I.

Young, J. F.

Yuan, X.-D.

Zen, C.

Zhang, X.

J. Wang, J. Sun, X. Zhang, and D. Huang, “PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals,” Electron. Lett. 44, 413-414 (2008).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, X. Zhang, D. Liu, and D. Huang, “Proposal and simulation for all-optical format conversion between differential phase-shift keying signals based on cascaded second-order nonlinearities,” Opt. Commun. 281, 5019-5024 (2008).
[CrossRef]

J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

Zhao, X.

Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Qian, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006).
[CrossRef]

Zhou, M.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

Zhu, Z.-H.

Zou, H.

Appl. Phys. Lett. (1)

M. F. Yanik and S. Fana, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

Electron. Lett. (3)

C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862-863 (2004).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett. 43, 940-941 (2007).
[CrossRef]

J. Wang, J. Sun, X. Zhang, and D. Huang, “PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals,” Electron. Lett. 44, 413-414 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

L. Chen and E. Towe, “Design of high-Q microcavities for proposed two-dimensional electrically pumped photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 117-123 (2006).
[CrossRef]

K. Igarashi and K. Kikuchi, “Optical signal processing by phase modulation and subsequent spectral filtering aiming at applications to ultrafast optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 14, 551-565 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541-543 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Appl. Phys. (2)

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, G. Franzo, F. Priolo, and F. Iacona, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si nano crystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzò, and F. Priolo, “Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals,” J. Mod. Opt. 49, 719-730 (2002).
[CrossRef]

J. Non-Cryst. Solids (1)

Q. Liu, X. Zhao, F. Gan, J. Mi, and S. Qian, “Femtosecond optical Kerr effect study of amorphous chalcogenide films,” J. Non-Cryst. Solids 352, 2351-2354 (2006).
[CrossRef]

J. Opt. Soc. Am. B (15)

M. Djavid, A. Ghaffari, F. Monifi, and M. S. Abrishamian, “Photonic crystal power dividers using L-shaped based on ring resonators,” J. Opt. Soc. Am. B 25, 1231-1235 (2008).
[CrossRef]

S. H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951-1959 (2007).
[CrossRef]

J. K. S. Poon, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665-1673 (2004).
[CrossRef]

C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules,” J. Opt. Soc. Am. B 23, 2434-2440 (2006).
[CrossRef]

N. C. Panoiu, M. Bahl, and R. M. Osgood, Jr., “Ultrafast optical tuning of a superprism effect in nonlinear photonic crystals,” J. Opt. Soc. Am. B 21, 1500-1508 (2004).
[CrossRef]

D. Pelinovsky, J. Sears, L. Brzozowski, and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. I. Analysis,” J. Opt. Soc. Am. B 19, 43-53 (2002).
[CrossRef]

D. Pelinovsky and E. H. Sargent, “Stable all-optical limiting in nonlinear periodic structures. II. Computations,” J. Opt. Soc. Am. B 19, 1873-1889 (2002).
[CrossRef]

W. N. Ye, L. Brzozowski, E. H. Sargent, and D. Pelinovsky, “Stable all-optical limiting in nonlinear periodic structures. III. Nonsolitonic pulse propagation,” J. Opt. Soc. Am. B 20, 695-705 (2003).
[CrossRef]

H. Zou, G. Q. Liang, and H. Z. Wang, “Efficient all-optical dual channel switches, logic gates, half-adder, and half subtracter in one-dimensional photonic crystal heterostructure,” J. Opt. Soc. Am. B 25, 351-360 (2008).
[CrossRef]

E. Puddu, A. Allevi, A. Andreoni, and M. Bondani, “All-optical logic operations by means of two interlinked χ(2) interaction in a single crystal,” J. Opt. Soc. Am. B 21, 1839-1847 (2004).
[CrossRef]

T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23, 684-691 (2006).
[CrossRef]

D. V. Novistisky and S. Y. Mikhnevich, “Bistable behavior of reflection and transmission of a one-dimensional photonic crystal with a dense resonant medium as defect,” J. Opt. Soc. Am. B 25, 1362-1370 (2008).
[CrossRef]

M. G. Banaee, A. R. Cowan, and J. F. Young, “Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystal,” J. Opt. Soc. Am. B 19, 2224-2231 (2002).
[CrossRef]

S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241-2249 (2002).
[CrossRef]

A. Kumar and T. Kurz, “Switching between bistable states of a soliton inhomogenously doped fiber coupler,” J. Opt. Soc. Am. B 18, 897-900 (2001).
[CrossRef]

Microelectron. Eng. (1)

T. Stomeo, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, and M. De Vittorio, “Design and fabrication of active and passive photonic crystal resonators,” Microelectron. Eng. 83, 1823-1825 (2006).
[CrossRef]

Opt. Commun. (6)

I. S. Maksymov, L. F. Marsal, and J. Pallares, “Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals,” Opt. Commun. 239, 213-222 (2004).
[CrossRef]

J. Wang, J. Sun, X. Zhang, D. Liu, and D. Huang, “Proposal and simulation for all-optical format conversion between differential phase-shift keying signals based on cascaded second-order nonlinearities,” Opt. Commun. 281, 5019-5024 (2008).
[CrossRef]

C. Lixue, D. Xiaoxu, D. Weiqiang, C. Liangcai, and L. Shutian, “Finite-difference time-domain analysis of optical bistability with low threshold in one-dimensional nonlinear photonic crystal with Kerr medium,” Opt. Commun. 209, 491-500 (2002).
[CrossRef]

W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, and A. S. B. Sombra, “All optical logic gates based on an asymmetric nonlinear directional coupler,” Opt. Commun. 262, 32-37 (2006).
[CrossRef]

A. Rostami and G. Rostami, “Full optical analog to digital (A/D) converter based on Kerr-like nonlinear ring resonator,” Opt. Commun. 228, 39-48 (2003).
[CrossRef]

L.-X. Chena and D. Kimb, “A bistable switching of two-dimensional photonic crystal with Kerr point defect,” Opt. Commun. 218, 19-26 (2003).
[CrossRef]

Opt. Express (16)

K. Ogusu and K. Takayama, “Optical bistability in photonic crystal microrings with nonlinear dielectric materials,” Opt. Express 16, 7525-7539 (2008).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678-2687 (2005).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two dimensional photonic crystal slab,” Opt. Express 14, 1230-1235 (2006).
[CrossRef] [PubMed]

Z.-H. Zhu, W.-M. Ye, J.-R. Ji, X.-D. Yuan, and C. Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” Opt. Express 14, 1783-1788 (2006).
[CrossRef] [PubMed]

C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. C. Magi, D. J. Moss, and B. J. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express 14, 1070-1078 (2006).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Sharp bends in photonic crystal waveguides as nonlinear Fano resonators,” Opt. Express 13, 3969-3976 (2005).
[CrossRef] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
[CrossRef] [PubMed]

Y.-D. Wu, T.-T. Shih, and M.-H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16, 248-257 (2008).
[CrossRef] [PubMed]

Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033-1038 (2005).
[CrossRef] [PubMed]

N. C. Panoiu, M. Bahl, and R. M. Osgood, Jr., “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12, 1605-1610 (2004).
[CrossRef] [PubMed]

J. H. Greene and A. Taflove, “General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics,” Opt. Express 14, 8305-8310 (2006).
[CrossRef] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976-5990 (2007).
[CrossRef] [PubMed]

J. B. Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljaciić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161-16176 (2007).
[CrossRef]

Z. Qiang, W. Z. Richard, and A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007).
[CrossRef] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458-17481 (2007).
[CrossRef] [PubMed]

Opt. Lett. (8)

Y. Lin and E. Chow, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903-1905 (2001).
[CrossRef]

J. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769-71 (2004).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

J. Wang, J. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

Y. Dumeige, L. Ghisa, P. Féron, and Y. Dumeige, “Integrated all-optical pulse restoration with coupled nonlinear microring resonators,” Opt. Lett. 31, 2187-2189 (2006).
[CrossRef] [PubMed]

T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P.-T. Ho, “Photonic logic NOR gate based on two symmetric microring resonators,” Opt. Lett. 29, 2779-2781 (2004).
[CrossRef] [PubMed]

S. Pereira, P. Chak, and J. E. Sipe, “All-optical AND gate by use of a Kerr nonlinear microresonator structure,” Opt. Lett. 28, 444-446 (2003).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2508 (2003).
[CrossRef] [PubMed]

Opt. Mater. (1)

M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731-739 (2005).
[CrossRef]

Opt. Quantum Electron. (2)

E. P. Kosmidou and T. D. Tsiboukis, “An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials,” Opt. Quantum Electron. 35, 931-946 (2003).
[CrossRef]

I. S. Maksymov, L. F. Marsal and J. Pallarès, “An FDTD analysis of nonlinear photonic crystal waveguides,” Opt. Quantum Electron. 38, 149-160 (2006).
[CrossRef]

Phys. Lett. A (1)

H. Xiao and D. Yao, “Optical limitation in two-dimensional nonlinear photonic crystal with triangular lattice,” Phys. Lett. A 359, 723-727 (2006).
[CrossRef]

Phys. Rev. E (3)

S. Mookherjea and A. Yariv, “Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,” Phys. Rev. E 66, 046610 (2002).
[CrossRef]

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[CrossRef]

Solid-State Electron. (1)

K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376-1380 (2007).
[CrossRef]

Other (4)

A. Taflov and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Dekker, 2003).
[CrossRef]

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

M. Mazidi and J. G. Mazidi, The 8051 Microcontroller and Embedded Systems (Prentice-Hall, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a nonlinear double channel ring resonator.

Fig. 2
Fig. 2

Dispersion diagram of a square lattice photonic crystal with GaAs rods in BSC glass background.

Fig. 3
Fig. 3

Schematic of our proposed AND gate.

Fig. 4
Fig. 4

Transmission spectra of a linear double channel ring resonator.

Fig. 5
Fig. 5

Transmission to each port of the nonlinear add–drop ring resonator.

Fig. 6
Fig. 6

Field distribution to show the performance of the proposed optical AND gate.

Fig. 7
Fig. 7

Temporal waveforms of signals A and B, and logic AND output to shows the logic AND operation.

Fig. 8
Fig. 8

Valid power level ranges.

Fig. 9
Fig. 9

Extinction ratio versus acceptable input power deviations.

Tables (1)

Tables Icon

Table 1 Truth Table of the Proposed AND Gate

Metrics