Abstract

We have developed and implemented a numerical scheme to compute optical forces in two-dimensional (2D) structures based on the boundary integral equations, which are solved by the numerical boundary element method. We demonstrate the efficiency of this method by calculating the optical scattering and radiation pressures exerted on 2D objects under the illumination of both plane wave and cylindrical Gaussian beams. The results are validated by comparing to analytical Mie scattering results on circular cylinders. In the framework of this approach the object can be of arbitrary shape with dimensions either far larger, comparable, or much less than the wavelength concerned, and the constituent components can be either dielectric or metallic. We applied the method to study the resonance enhancement of optical forces and the effect of surface roughness on such enhancement. Surprisingly, we found that a cylinder with “controlled roughness” can give a stronger optical force than a smooth surface at resonance.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription