Abstract

Transparent Ni2+-doped new La2O3-Ga2O3-Al2O3-SiO2 (LGAS) glass-ceramics (GC) embedding β-Ga2O3 nanocrystals was prepared. Upon excitation at 970nm, an emission band at around 1200nm was observed originating from the T23(F3)A23(F3) transition of Ni2+ in distorted octahedral sites. Effects of both heat-treated temperature and doping content on the luminescent properties were also studied. The results revealed that a concentration quenching of the luminescence occurs as the molar ratio of Ni2+ exceeds the optimum value. The superbroadband near-infrared (NIR) emission from Ni2+-doped new GC can be as host materials for a broadband optical amplifier.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311-319 (2003).
  2. H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57-1.60 μm wavelength region,” IEEE Photonics Technol. Lett. 9, 596-598 (1997).
    [CrossRef]
  3. C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035-4037 (2003).
    [CrossRef]
  4. S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818-820 (2000).
    [CrossRef]
  5. T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86, 131903 (2005).
    [CrossRef]
  6. T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804-3806 (2004).
    [CrossRef]
  7. S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
    [CrossRef]
  8. T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351, 2304-2309 (2005).
    [CrossRef]
  9. B. T. Wu, J. R. Qiu, M. Y. Peng, J. J. Ren, X. W. Jiang, and C. S. Zhu, “Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence,” Mater. Res. Bull. 42, 762-768 (2007).
    [CrossRef]
  10. Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510-514 (2000).
    [CrossRef]
  11. L. Galoisy and G. Calas, “Structural environment of nickel in silicate glass/melt systems: part I. Spectroscopic determination of coordination states,” Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
    [CrossRef]
  12. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions,” J. Phys. Soc. Jpn. 9, 753-779 (1954).
    [CrossRef]
  13. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Claredon, 1948).
  14. S. F. Zhou, H. F. Dong, G. F. Feng, B. T. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glassceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15, 5477-5481 (2007).
    [CrossRef] [PubMed]
  15. J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57-63 (1986).
    [CrossRef]

2007 (3)

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

B. T. Wu, J. R. Qiu, M. Y. Peng, J. J. Ren, X. W. Jiang, and C. S. Zhu, “Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence,” Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

S. F. Zhou, H. F. Dong, G. F. Feng, B. T. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glassceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15, 5477-5481 (2007).
[CrossRef] [PubMed]

2005 (2)

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351, 2304-2309 (2005).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

2004 (1)

T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804-3806 (2004).
[CrossRef]

2003 (2)

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311-319 (2003).

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

2000 (2)

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510-514 (2000).
[CrossRef]

1997 (1)

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57-1.60 μm wavelength region,” IEEE Photonics Technol. Lett. 9, 596-598 (1997).
[CrossRef]

1993 (1)

L. Galoisy and G. Calas, “Structural environment of nickel in silicate glass/melt systems: part I. Spectroscopic determination of coordination states,” Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
[CrossRef]

1986 (1)

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57-63 (1986).
[CrossRef]

1954 (1)

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions,” J. Phys. Soc. Jpn. 9, 753-779 (1954).
[CrossRef]

Batchelor, C.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Bergin, F. J.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57-63 (1986).
[CrossRef]

Calas, G.

L. Galoisy and G. Calas, “Structural environment of nickel in silicate glass/melt systems: part I. Spectroscopic determination of coordination states,” Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
[CrossRef]

Chung, W. J.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Dai, S. X.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311-319 (2003).

Donegan, J. F.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57-63 (1986).
[CrossRef]

Dong, H. F.

S. F. Zhou, H. F. Dong, G. F. Feng, B. T. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glassceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15, 5477-5481 (2007).
[CrossRef] [PubMed]

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

Feng, G. F.

Feng, X.

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

Fukuda, T.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510-514 (2000).
[CrossRef]

Galoisy, L.

L. Galoisy and G. Calas, “Structural environment of nickel in silicate glass/melt systems: part I. Spectroscopic determination of coordination states,” Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
[CrossRef]

Glynn, T. J.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57-63 (1986).
[CrossRef]

Gurney, R. W.

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Claredon, 1948).

Horibuchi, K.

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351, 2304-2309 (2005).
[CrossRef]

Hu, L. L.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311-319 (2003).

Imbush, G. F.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57-63 (1986).
[CrossRef]

Jha, A.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Jiang, X. W.

B. T. Wu, J. R. Qiu, M. Y. Peng, J. J. Ren, X. W. Jiang, and C. S. Zhu, “Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence,” Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Jiang, Z. H.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311-319 (2003).

Klimm, D.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510-514 (2000).
[CrossRef]

Mott, N. F.

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Claredon, 1948).

Murugan, G. S.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

Ohishi, Y.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351, 2304-2309 (2005).
[CrossRef]

T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804-3806 (2004).
[CrossRef]

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57-1.60 μm wavelength region,” IEEE Photonics Technol. Lett. 9, 596-598 (1997).
[CrossRef]

Ono, H.

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57-1.60 μm wavelength region,” IEEE Photonics Technol. Lett. 9, 596-598 (1997).
[CrossRef]

Peng, M. Y.

B. T. Wu, J. R. Qiu, M. Y. Peng, J. J. Ren, X. W. Jiang, and C. S. Zhu, “Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence,” Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Qiu, J. R.

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

B. T. Wu, J. R. Qiu, M. Y. Peng, J. J. Ren, X. W. Jiang, and C. S. Zhu, “Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence,” Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

S. F. Zhou, H. F. Dong, G. F. Feng, B. T. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glassceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15, 5477-5481 (2007).
[CrossRef] [PubMed]

Reiche, P.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510-514 (2000).
[CrossRef]

Remeika, J. P.

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57-63 (1986).
[CrossRef]

Ren, J. J.

B. T. Wu, J. R. Qiu, M. Y. Peng, J. J. Ren, X. W. Jiang, and C. S. Zhu, “Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence,” Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Shen, S.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Sugano, S.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions,” J. Phys. Soc. Jpn. 9, 753-779 (1954).
[CrossRef]

Suzuki, T.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351, 2304-2309 (2005).
[CrossRef]

T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804-3806 (2004).
[CrossRef]

Tanabe, S.

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

Tanabe, Y.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions,” J. Phys. Soc. Jpn. 9, 753-779 (1954).
[CrossRef]

Tomm, Y.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510-514 (2000).
[CrossRef]

Wang, Z. Y.

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

Wu, B. T.

B. T. Wu, J. R. Qiu, M. Y. Peng, J. J. Ren, X. W. Jiang, and C. S. Zhu, “Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence,” Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

S. F. Zhou, H. F. Dong, G. F. Feng, B. T. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glassceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15, 5477-5481 (2007).
[CrossRef] [PubMed]

Xu, S. Q.

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311-319 (2003).

Yamada, M.

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57-1.60 μm wavelength region,” IEEE Photonics Technol. Lett. 9, 596-598 (1997).
[CrossRef]

Yang, H. C.

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

Yang, J. H.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311-319 (2003).

Yang, Z. M.

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311-319 (2003).

Zeng, H. P.

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

S. F. Zhou, H. F. Dong, G. F. Feng, B. T. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glassceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15, 5477-5481 (2007).
[CrossRef] [PubMed]

Zhou, S. F.

S. F. Zhou, H. F. Dong, G. F. Feng, B. T. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glassceramic containing β-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15, 5477-5481 (2007).
[CrossRef] [PubMed]

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

Zhu, B.

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

Zhu, C. S.

B. T. Wu, J. R. Qiu, M. Y. Peng, J. J. Ren, X. W. Jiang, and C. S. Zhu, “Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence,” Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86, 131903 (2005).
[CrossRef]

T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass,” Appl. Phys. Lett. 84, 3804-3806 (2004).
[CrossRef]

Geochim. Cosmochim. Acta (1)

L. Galoisy and G. Calas, “Structural environment of nickel in silicate glass/melt systems: part I. Spectroscopic determination of coordination states,” Geochim. Cosmochim. Acta 57, 3613-3626 (1993).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57-1.60 μm wavelength region,” IEEE Photonics Technol. Lett. 9, 596-598 (1997).
[CrossRef]

J. Alloys Compd. (1)

S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. L. Hu, and Z. H. Jiang, “Spectral properties and thermal stability of Er3+-doped oxyfluoride silicate glasses for broadband optical amplifier,” J. Alloys Compd. 316, 311-319 (2003).

J. Appl. Phys. (1)

S. F. Zhou, H. F. Dong, H. P. Zeng, B. T. Wu, B. Zhu, H. C. Yang, S. Q. Xu, Z. Y. Wang, and J. R. Qiu, “Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics,” J. Appl. Phys. 102, 063106 (2007).
[CrossRef]

J. Cryst. Growth (1)

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510-514 (2000).
[CrossRef]

J. Lumin. (1)

J. F. Donegan, F. J. Bergin, T. J. Glynn, G. F. Imbush, and J. P. Remeika, “The optical spectroscopy of LiGa5O8:Ni2+,” J. Lumin. 35, 57-63 (1986).
[CrossRef]

J. Non-Cryst. Solids (1)

T. Suzuki, K. Horibuchi, and Y. Ohishi, “Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics containing Ni2+-doped nanocrystals,” J. Non-Cryst. Solids 351, 2304-2309 (2005).
[CrossRef]

J. Phys. Soc. Jpn. (1)

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions,” J. Phys. Soc. Jpn. 9, 753-779 (1954).
[CrossRef]

Mater. Res. Bull. (1)

B. T. Wu, J. R. Qiu, M. Y. Peng, J. J. Ren, X. W. Jiang, and C. S. Zhu, “Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence,” Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Opt. Express (1)

Other (1)

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Claredon, 1948).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

DTA curve of Ni 2 + -doped LGAS glass.

Fig. 2
Fig. 2

XRD patterns of Ni 2 + -doped LGAS glass and GC at variant annealing temperatures (NiO doped at 0.1 wt. % ).

Fig. 3
Fig. 3

Absorption spectra of Ni 2 + -doped LGAS glass and GC at variant annealing temperatures (NiO doped at 0.1 wt. % ).

Fig. 4
Fig. 4

Absorption spectra of LGAS GC at variant NiO-doped contents (annealing temperature at 950 ° C ).

Fig. 5
Fig. 5

Energy level diagram of octahedral Ni 2 + ions in LGAS GC.

Fig. 6
Fig. 6

Emission spectra of Ni 2 + -doped LGAS glass and GC (annealed at 850 ° C , 900 ° C , and 950 ° C for 4 h , respectively) at room temperature (NiO doped at 0.1 wt. % ).

Fig. 7
Fig. 7

Emission spectra of Ni 2 + -doped LGAS glass and GC (NiO doped at 0.05, 0.1, 0.2, 0.5, and 1 wt. % , respectively) at room temperature (annealing temperature at 950 ° C ).

Fig. 8
Fig. 8

Emission decay curves of NIR emission signals in the Ni 2 + -doped LGAS GC (NiO doped at 0.1 wt. % ) with thermal treating at 950 ° C for 4 h .

Fig. 9
Fig. 9

Fluorescence lifetime Ni 2 + -doped LGAS GC varying with the doping content and the annealing temperature.

Tables (2)

Tables Icon

Table 1 Comparison of the Experimental and Fitted Energy Levels for Ni 2 + in the Postannealed LGAS GC

Tables Icon

Table 2 Comparison of Optical Properties and Crystal Field Parameters for Ni 2 + in LGAS GC and Ever Reported LGS GC a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W nrad W 0 exp ( Δ k T ) ,
σ = λ 0 2 η 4 π n 2 τ × ( ln 2 π ) 1 2 × 1 Δ v 1 2 ,

Metrics