Abstract

We investigate the novel properties of optical fiber lines made of Mamyshev regenerators (MRs) based on self-phase modulation and subsequent spectral filtering. In particular, we show that such a regenerator line can be used to generate random sequences of optical pulses from an incoherent wave. This behavior is related to the existence of stable eigenpulses that can propagate unchanged through the regenerator line and act as attractors for incoming pulses. By changing the regenerator parameters, we also report the existence of multiple eigenpulses and limit cycles. Finally, we demonstrate that MRs could be used as efficient nonlinear gates in fiber laser cavities.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Fatome, S. Pitois, A. Kamagate, G. Millot, D. Massoudre, and J. L. Oudar, “All-optical reshaping based on a passive saturable absorber microcavity device for future 160 Gb/s applications,” IEEE Photonics Technol. Lett. 19, 245-247 (2007).
    [CrossRef]
  2. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56-58 (1988).
    [CrossRef] [PubMed]
  3. M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbits/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34, 1135-1136 (1988).
    [CrossRef]
  4. S. Boscolo, S. A. Derevyanko, S. K. Turitsyn, A. S. Kovalev, and M. M. Bogdan, “Autosoliton propagation and mapping problem in optical fiber lines with lumped nonlinear devices,” Phys. Rev. E 72, 016601 (2005).
    [CrossRef]
  5. V. S. Grigoryan, “Autosoliton in a fiber with distributed saturable amplifiers,” Opt. Lett. 21, 1882-1884 (1996).
    [CrossRef] [PubMed]
  6. A. Gray, Z. Huang, Y. W. A. Lee, I. Y. Khrushchev, and I. Bennion, “Experimental observation of autosoliton propagation in a dispersion-managed system guided by nonlinear optical loop mirrors,” Opt. Lett. 29, 926-928 (2004).
    [CrossRef] [PubMed]
  7. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference on Optical Communication, (ECOC) 98, (IEEE, 1998), pp. 475-476.
    [CrossRef]
  8. L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators 2R regeneration,” Opt. Express 15, 5100-5113 (2007).
    [CrossRef] [PubMed]
  9. M. Rochette, L. B. Fu, V. G. Ta"eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
    [CrossRef]
  10. J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
    [CrossRef]
  11. M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14, 11018-11023 (2006).
    [CrossRef] [PubMed]
  12. T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J. C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737-1747 (2006).
    [CrossRef] [PubMed]
  13. L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for self-phase modulation-based 2R-regenerators,” in Optical Fiber Conference (OFC) 2007 (IEEE, 2007), paper OThB6.
    [CrossRef]
  14. C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
    [CrossRef]
  15. B. E. Olsson and D. J. Blumenthal, “Pulse restoration by filtering of self-phase modulation broadened optical spectrum,” J. Lightwave Technol. 20, 1113-1117 (2002).
    [CrossRef]
  16. L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16, 2264-2275 (2008).
    [CrossRef] [PubMed]
  17. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
    [CrossRef]
  18. S. Pitois, C. Finot, and L. Provost, “Asymptotic properties of incoherent waves propagating in an all-optical regenerators line,” Opt. Lett. 32, 3262-3264 (2007).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  20. C. Finot and G. Millot, “Interactions of optical similaritons,” Opt. Express 13, 5825-5830 (2005).
    [CrossRef] [PubMed]
  21. S. Pitois, C. Finot, J. Fatome, and G. Millot, “Generation of 20-Ghz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301-306 (2006).
    [CrossRef]
  22. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
    [CrossRef] [PubMed]
  23. L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion,” Opt. Commun. 281, 3557-3560 (2008).
    [CrossRef]
  24. M. E. Fermann, F. Haberi, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15, 752-754 (1990).
    [CrossRef] [PubMed]
  25. I. N. Duling III, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539-541 (1991).
    [CrossRef]
  26. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting passively modelocked erbium fiber ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542-544 (1991).
    [CrossRef]
  27. C. Finot, S. Pitois, and G. Millot, “Regenerative 40-Gb/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776-1778 (2005).
    [CrossRef] [PubMed]
  28. J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
    [CrossRef]
  29. Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Generation of 10 GHz similariton pulses using erbium-doped fiber amplifiers for application to multiwavelength sources,” in Conference on Lasers and Electro-Optics International Quantum Electronics Conference and Photonics Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuK2.
    [PubMed]
  30. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELS,” Opt. Express 14, 9611-9616 (2006).
    [CrossRef] [PubMed]
  31. C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
    [CrossRef]
  32. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58-73 (2008).
    [CrossRef]

2008 (4)

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16, 2264-2275 (2008).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion,” Opt. Commun. 281, 3557-3560 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

2007 (5)

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
[CrossRef] [PubMed]

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
[CrossRef]

S. Pitois, C. Finot, and L. Provost, “Asymptotic properties of incoherent waves propagating in an all-optical regenerators line,” Opt. Lett. 32, 3262-3264 (2007).
[CrossRef]

J. Fatome, S. Pitois, A. Kamagate, G. Millot, D. Massoudre, and J. L. Oudar, “All-optical reshaping based on a passive saturable absorber microcavity device for future 160 Gb/s applications,” IEEE Photonics Technol. Lett. 19, 245-247 (2007).
[CrossRef]

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators 2R regeneration,” Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

2006 (6)

M. Rochette, L. B. Fu, V. G. Ta"eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14, 11018-11023 (2006).
[CrossRef] [PubMed]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J. C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

S. Pitois, C. Finot, J. Fatome, and G. Millot, “Generation of 20-Ghz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301-306 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELS,” Opt. Express 14, 9611-9616 (2006).
[CrossRef] [PubMed]

2005 (3)

C. Finot, S. Pitois, and G. Millot, “Regenerative 40-Gb/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776-1778 (2005).
[CrossRef] [PubMed]

C. Finot and G. Millot, “Interactions of optical similaritons,” Opt. Express 13, 5825-5830 (2005).
[CrossRef] [PubMed]

S. Boscolo, S. A. Derevyanko, S. K. Turitsyn, A. S. Kovalev, and M. M. Bogdan, “Autosoliton propagation and mapping problem in optical fiber lines with lumped nonlinear devices,” Phys. Rev. E 72, 016601 (2005).
[CrossRef]

2004 (2)

A. Gray, Z. Huang, Y. W. A. Lee, I. Y. Khrushchev, and I. Bennion, “Experimental observation of autosoliton propagation in a dispersion-managed system guided by nonlinear optical loop mirrors,” Opt. Lett. 29, 926-928 (2004).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

2002 (2)

B. E. Olsson and D. J. Blumenthal, “Pulse restoration by filtering of self-phase modulation broadened optical spectrum,” J. Lightwave Technol. 20, 1113-1117 (2002).
[CrossRef]

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
[CrossRef]

1996 (1)

1991 (2)

I. N. Duling III, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539-541 (1991).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting passively modelocked erbium fiber ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542-544 (1991).
[CrossRef]

1990 (1)

1988 (2)

N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56-58 (1988).
[CrossRef] [PubMed]

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbits/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34, 1135-1136 (1988).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Asobe, M.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbits/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34, 1135-1136 (1988).
[CrossRef]

Bennion, I.

Billet, C.

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

Blumenthal, D. J.

Bogdan, M. M.

S. Boscolo, S. A. Derevyanko, S. K. Turitsyn, A. S. Kovalev, and M. M. Bogdan, “Autosoliton propagation and mapping problem in optical fiber lines with lumped nonlinear devices,” Phys. Rev. E 72, 016601 (2005).
[CrossRef]

Boscolo, S.

S. Boscolo, S. A. Derevyanko, S. K. Turitsyn, A. S. Kovalev, and M. M. Bogdan, “Autosoliton propagation and mapping problem in optical fiber lines with lumped nonlinear devices,” Phys. Rev. E 72, 016601 (2005).
[CrossRef]

Bramerie, L.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J. C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Cabot, S.

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
[CrossRef]

Chartier, T.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J. C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

Derevyanko, S. A.

S. Boscolo, S. A. Derevyanko, S. K. Turitsyn, A. S. Kovalev, and M. M. Bogdan, “Autosoliton propagation and mapping problem in optical fiber lines with lumped nonlinear devices,” Phys. Rev. E 72, 016601 (2005).
[CrossRef]

Doran, N. J.

Dudley, J. M.

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
[CrossRef]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

Duling III, I. N.

Dupriez, P.

Eggleton, B. J.

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

M. Rochette, L. B. Fu, V. G. Ta"eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

Essiambre, R. J.

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
[CrossRef]

Fatome, J.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

J. Fatome, S. Pitois, A. Kamagate, G. Millot, D. Massoudre, and J. L. Oudar, “All-optical reshaping based on a passive saturable absorber microcavity device for future 160 Gb/s applications,” IEEE Photonics Technol. Lett. 19, 245-247 (2007).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, and G. Millot, “Generation of 20-Ghz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Fermann, M. E.

Finot, C.

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16, 2264-2275 (2008).
[CrossRef] [PubMed]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

S. Pitois, C. Finot, and L. Provost, “Asymptotic properties of incoherent waves propagating in an all-optical regenerators line,” Opt. Lett. 32, 3262-3264 (2007).
[CrossRef]

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
[CrossRef]

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators 2R regeneration,” Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
[CrossRef] [PubMed]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELS,” Opt. Express 14, 9611-9616 (2006).
[CrossRef] [PubMed]

S. Pitois, C. Finot, J. Fatome, and G. Millot, “Generation of 20-Ghz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301-306 (2006).
[CrossRef]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40-Gb/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776-1778 (2005).
[CrossRef] [PubMed]

C. Finot and G. Millot, “Interactions of optical similaritons,” Opt. Express 13, 5825-5830 (2005).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for self-phase modulation-based 2R-regenerators,” in Optical Fiber Conference (OFC) 2007 (IEEE, 2007), paper OThB6.
[CrossRef]

Foreman, H. D.

Fu, L. B.

M. Rochette, L. B. Fu, V. G. Ta"eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Gay, M.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J. C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Gray, A.

Grigoryan, V. S.

Haberi, F.

Hagimoto, K.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbits/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34, 1135-1136 (1988).
[CrossRef]

Hirano, A.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbits/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34, 1135-1136 (1988).
[CrossRef]

Hochreiter, H.

Hofer, M.

Huang, Z.

Jacques, J.

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
[CrossRef]

Kamagate, A.

J. Fatome, S. Pitois, A. Kamagate, G. Millot, D. Massoudre, and J. L. Oudar, “All-optical reshaping based on a passive saturable absorber microcavity device for future 160 Gb/s applications,” IEEE Photonics Technol. Lett. 19, 245-247 (2007).
[CrossRef]

Kauer, M.

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
[CrossRef]

Khrushchev, I. Y.

Kikuchi, K.

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Generation of 10 GHz similariton pulses using erbium-doped fiber amplifiers for application to multiwavelength sources,” in Conference on Lasers and Electro-Optics International Quantum Electronics Conference and Photonics Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuK2.
[PubMed]

Kovalev, A. S.

S. Boscolo, S. A. Derevyanko, S. K. Turitsyn, A. S. Kovalev, and M. M. Bogdan, “Autosoliton propagation and mapping problem in optical fiber lines with lumped nonlinear devices,” Phys. Rev. E 72, 016601 (2005).
[CrossRef]

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting passively modelocked erbium fiber ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542-544 (1991).
[CrossRef]

Lee, Y. W. A.

Leuthold, J.

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
[CrossRef]

Littler, I. C. M.

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Lutther-Davies, B.

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Malinowski, A.

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference on Optical Communication, (ECOC) 98, (IEEE, 1998), pp. 475-476.
[CrossRef]

Massoudre, D.

J. Fatome, S. Pitois, A. Kamagate, G. Millot, D. Massoudre, and J. L. Oudar, “All-optical reshaping based on a passive saturable absorber microcavity device for future 160 Gb/s applications,” IEEE Photonics Technol. Lett. 19, 245-247 (2007).
[CrossRef]

Matsas, V. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting passively modelocked erbium fiber ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542-544 (1991).
[CrossRef]

Matsumoto, M.

Millot, G.

J. Fatome, S. Pitois, A. Kamagate, G. Millot, D. Massoudre, and J. L. Oudar, “All-optical reshaping based on a passive saturable absorber microcavity device for future 160 Gb/s applications,” IEEE Photonics Technol. Lett. 19, 245-247 (2007).
[CrossRef]

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, and G. Millot, “Generation of 20-Ghz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301-306 (2006).
[CrossRef]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40-Gb/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776-1778 (2005).
[CrossRef] [PubMed]

C. Finot and G. Millot, “Interactions of optical similaritons,” Opt. Express 13, 5825-5830 (2005).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

Miyamoto, Y.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbits/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34, 1135-1136 (1988).
[CrossRef]

Moss, D. J.

M. Rochette, L. B. Fu, V. G. Ta"eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Mukasa, K.

Nguyen, T. N.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J. C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Nilsson, J.

Olsson, B. E.

Oudar, J. L.

J. Fatome, S. Pitois, A. Kamagate, G. Millot, D. Massoudre, and J. L. Oudar, “All-optical reshaping based on a passive saturable absorber microcavity device for future 160 Gb/s applications,” IEEE Photonics Technol. Lett. 19, 245-247 (2007).
[CrossRef]

Ozeki, Y.

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Generation of 10 GHz similariton pulses using erbium-doped fiber amplifiers for application to multiwavelength sources,” in Conference on Lasers and Electro-Optics International Quantum Electronics Conference and Photonics Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuK2.
[PubMed]

Parmigiani, F.

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting passively modelocked erbium fiber ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542-544 (1991).
[CrossRef]

Petropoulos, P.

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting passively modelocked erbium fiber ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542-544 (1991).
[CrossRef]

Pitois, S.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

S. Pitois, C. Finot, and L. Provost, “Asymptotic properties of incoherent waves propagating in an all-optical regenerators line,” Opt. Lett. 32, 3262-3264 (2007).
[CrossRef]

J. Fatome, S. Pitois, A. Kamagate, G. Millot, D. Massoudre, and J. L. Oudar, “All-optical reshaping based on a passive saturable absorber microcavity device for future 160 Gb/s applications,” IEEE Photonics Technol. Lett. 19, 245-247 (2007).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, and G. Millot, “Generation of 20-Ghz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301-306 (2006).
[CrossRef]

C. Finot, S. Pitois, and G. Millot, “Regenerative 40-Gb/s wavelength converter based on similariton generation,” Opt. Lett. 30, 1776-1778 (2005).
[CrossRef] [PubMed]

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

Provost, L.

Raybon, G.

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
[CrossRef]

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

Richardson, D. J.

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16, 2264-2275 (2008).
[CrossRef] [PubMed]

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators 2R regeneration,” Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
[CrossRef] [PubMed]

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
[CrossRef]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELS,” Opt. Express 14, 9611-9616 (2006).
[CrossRef] [PubMed]

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting passively modelocked erbium fiber ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542-544 (1991).
[CrossRef]

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for self-phase modulation-based 2R-regenerators,” in Optical Fiber Conference (OFC) 2007 (IEEE, 2007), paper OThB6.
[CrossRef]

Rochette, M.

M. Rochette, L. B. Fu, V. G. Ta"eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Ruan, Y.

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Sahu, J. K.

Sato, K.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbits/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34, 1135-1136 (1988).
[CrossRef]

Shokooh-Saremi, M.

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Simon, J. C.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J. C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Su, Y.

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
[CrossRef]

Ta"eed, V. G.

M. Rochette, L. B. Fu, V. G. Ta"eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

Ta'eed, V. G.

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

Taira, K.

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Generation of 10 GHz similariton pulses using erbium-doped fiber amplifiers for application to multiwavelength sources,” in Conference on Lasers and Electro-Optics International Quantum Electronics Conference and Photonics Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuK2.
[PubMed]

Takushima, Y.

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Generation of 10 GHz similariton pulses using erbium-doped fiber amplifiers for application to multiwavelength sources,” in Conference on Lasers and Electro-Optics International Quantum Electronics Conference and Photonics Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuK2.
[PubMed]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion,” Opt. Commun. 281, 3557-3560 (2008).
[CrossRef]

Tropper, A. C.

Turitsyn, S. K.

S. Boscolo, S. A. Derevyanko, S. K. Turitsyn, A. S. Kovalev, and M. M. Bogdan, “Autosoliton propagation and mapping problem in optical fiber lines with lumped nonlinear devices,” Phys. Rev. E 72, 016601 (2005).
[CrossRef]

Wilcox, K. G.

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

Wood, D.

Wu, X.

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion,” Opt. Commun. 281, 3557-3560 (2008).
[CrossRef]

Yamabayashi, Y.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbits/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34, 1135-1136 (1988).
[CrossRef]

Zhang, H.

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion,” Opt. Commun. 281, 3557-3560 (2008).
[CrossRef]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion,” Opt. Commun. 281, 3557-3560 (2008).
[CrossRef]

Electron. Lett. (3)

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbits/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34, 1135-1136 (1988).
[CrossRef]

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1,000,000 km,” Electron. Lett. 38, 890-891 (2002).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, “Self-starting passively modelocked erbium fiber ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542-544 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, “Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Lutther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006).
[CrossRef]

M. Rochette, L. B. Fu, V. G. Ta"eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. Fatome, S. Pitois, A. Kamagate, G. Millot, D. Massoudre, and J. L. Oudar, “All-optical reshaping based on a passive saturable absorber microcavity device for future 160 Gb/s applications,” IEEE Photonics Technol. Lett. 19, 245-247 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

Nat. Phys. (1)

J. M. Dudley, C. Finot, G. Millot, and D. J. Richardson, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3, 597-603 (2007).
[CrossRef]

Opt. Commun. (3)

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion,” Opt. Commun. 281, 3557-3560 (2008).
[CrossRef]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbits/s,” Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, and G. Millot, “Generation of 20-Ghz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260, 301-306 (2006).
[CrossRef]

Opt. Express (7)

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express 15, 852-864 (2007).
[CrossRef] [PubMed]

C. Finot and G. Millot, “Interactions of optical similaritons,” Opt. Express 13, 5825-5830 (2005).
[CrossRef] [PubMed]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELS,” Opt. Express 14, 9611-9616 (2006).
[CrossRef] [PubMed]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16, 2264-2275 (2008).
[CrossRef] [PubMed]

M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14, 11018-11023 (2006).
[CrossRef] [PubMed]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J. C. Simon, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators 2R regeneration,” Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

Opt. Lett. (7)

Phys. Rev. E (1)

S. Boscolo, S. A. Derevyanko, S. K. Turitsyn, A. S. Kovalev, and M. M. Bogdan, “Autosoliton propagation and mapping problem in optical fiber lines with lumped nonlinear devices,” Phys. Rev. E 72, 016601 (2005).
[CrossRef]

Other (4)

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference on Optical Communication, (ECOC) 98, (IEEE, 1998), pp. 475-476.
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for self-phase modulation-based 2R-regenerators,” in Optical Fiber Conference (OFC) 2007 (IEEE, 2007), paper OThB6.
[CrossRef]

Y. Ozeki, Y. Takushima, K. Taira, and K. Kikuchi, “Generation of 10 GHz similariton pulses using erbium-doped fiber amplifiers for application to multiwavelength sources,” in Conference on Lasers and Electro-Optics International Quantum Electronics Conference and Photonics Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuK2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Schematic of the regenerator line and parameters used.

Fig. 2
Fig. 2

(a) Normalized TF after a single-stage MR (circles), a double-stage MR (gray solid curve), two regenerative blocks (dashed curve), and four double-stage MRs (solid black curve). The dotted line represents N out = N in G . (b) Asymptotical N out of a Gaussian pulse propagating in the line as a function of its initial temporal width τ in and initial amplitude N in . White-shaded area, the pulse converges toward N out = 3.27 ; black-shaded area, the pulse is attenuated and finally suppressed. (c) Temporal properties of the eigenpulse.

Fig. 3
Fig. 3

(a) Normalized TF after a single-stage MR (circles). The TF obtained after a double-stage MR (gray solid curve) is compared to the combination of two single-stage TFs (dashed curve). The dotted line represents N out = N in G . (b) Normalized TF after two regenerative blocks (dashed curve) and four double-stage MRs (solid black curve). (c),(d) Asymptotical N out of a Gaussian pulse propagation in the line as a function of its initial temporal τ width and initial power N in . White-shaded area, the pulse converges toward N out = 5 ; black-shaded area, the pulse is attenuated and finally suppressed. Different intermediate gains are tested, (c) G = 7.4 dB and (d) G = 7 dB .

Fig. 4
Fig. 4

Evolution of an incoherent wave with the parameters of configuration C1. (a) Input and (b) for K = 20 . Initial average amplitude is N av = 6.75.

Fig. 5
Fig. 5

Convergence of the output properties of the generated pulses. The density of the points is presented by gray scale. (a) After a single-stage regenerator, (b) after a double-stage regenerator, (c) after two double-stage regenerators, and (d) after K = 40 double-stage regenerators.

Fig. 6
Fig. 6

(a) Influence of the initial N av of the incoherent wave on the number of pulses normalized to a time slot of 1000 T 0 for various regenerator configurations; Circles, diamonds, and triangles are for configurations C1, C2, and C3, respectively (b) Distribution of the time spacing between two successive pulses for configuration C1 and for N av = 11 ; (c) same graph with the configuration C2.

Fig. 7
Fig. 7

(a) Longitudinal evolution of the temporal pulse profile during the propagation in the highly nonlinear fiber. (b) Evolution of a pair of pulses in the MR line separated by (b1) 5.9 T 0 and (b2) Δ T = 6.05 .

Fig. 8
Fig. 8

Evolution of a train of Gaussian pulses emitted at 10 GHz with a small amount of noise with the parameters of configuration C1. Intensity profiles, eye diagrams, and distributions of the peak powers of the pulses in the sequence are plotted in subfigures (a), (b), and (c), respectively. Subplots (1), (2), and (3) are the results for the initial pulses, the pulses for K = 1 and for K = 10 , respectively.

Fig. 9
Fig. 9

Evolution of the numbers of ones (diamonds) and zeros (circles) in the final sequence for configuration C1 as a function of the input peak power.

Fig. 10
Fig. 10

Evolution of a train of Gaussian pulses emitted at 10 GHz with an intensity modulation with the parameters of configuration C1. (a) Input and (c) for K = 10 . (b) Input and (d) K = 10 plotted with a difference temporal range.

Fig. 11
Fig. 11

Evolution of an initial sinusoidal beating cadenced at 10 GHz with the parameters of configuration C1. (a) Input, (b) for K = 2 , and (c) for K = 10 . (d)–(f) Corresponding eye diagrams.

Fig. 12
Fig. 12

Evolution of the number of output states as a function of the normalized length ξ L .

Fig. 13
Fig. 13

The two eigenpulses plotted on a (a) linear scale and on a (b) log scale (maximum of the pulse normalized to 1). In the dotted gray curves, eigenpulse 1; in the black solid curves, eigenpulse 2. (c) TFs associated with each eigenpulse.

Fig. 14
Fig. 14

Ouput levels according to initial pulses parameters; in black the pulse disappears, in gray, the pulse converges to eigenpulse 1, and in white the pulse asymptotically converges toward eigenpulse 2. Various magnifications are used.

Fig. 15
Fig. 15

(a) Output properties of the generated pulses after K = 80 stages. The density of the points is presented by gray scale. (b) Collision of two eigenpulses.

Fig. 16
Fig. 16

Evolution of a train of Gaussian pulses emitted at 10 GHz with a small amount of noise with the parameters of Fig. 13. (a) Input, (b) for K = 4 , and (c) for K = 10 . (d)–(f) Corresponding eye diagrams.

Fig. 17
Fig. 17

(a) Pair of pulses constituting the two limit cycles. (b) Convergence of the output properties of the generated pulses. The density of the points is presented by gray scale. Diagram obtained after K = 80 double-stage regenerators.

Fig. 18
Fig. 18

(a) Schematic of the hybrid regenerator line and parameters used. (b) Asymptotic TF. (c) Eigenpulse of the hybrid regenerator observed.

Fig. 19
Fig. 19

(a) Schematic of the proposed laser cavity. (b) Evolution of the pulse properties in the cavity; evolution of the temporal width versus the peak power. (c) Output self-similar pulse observed at the 20% output coupler. (d) Compressed pulse obtained after linear chirp compensation.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i ψ z = β 2 2 2 ψ T 2 γ ψ 2 ψ ,
i u ξ = 1 2 2 u τ 2 u 2 u ,
u ( ξ , τ ) = N in U , U ( ξ , τ ) = ψ P in , τ = T T 0 , ξ = β 2 T 0 2 z .
T 0 = 1 2 π δ f .
N in = T 0 2 β 2 γ P in .
N out = T 0 2 β 2 γ P out , N = T 0 2 β 2 γ P , N av = T 0 2 β 2 γ P av ,
τ in = T in T 0 , τ out = T out T 0 , ξ L = β 2 T 0 2 L ,
F ( v ) = exp [ ( v v 0 ) 2 + i ϕ ( v ) ] ,

Metrics