Abstract

We show that a one-dimensional metal–dielectric (MD) periodic structure can possess an omnidirectional band for a p-polarized wave, owing to the compensation effect of power flow in the parallel direction in the metal. When the net power flow in the direction parallel to the MD interface is zero or very small compared to the total power flow in the direction perpendicular to the interface, a dispersionless band with (nearly) flat band edges in the projected band diagram will occur. We numerically and experimentally demonstrate an omnidirectional passband in an Ag–ZnS stack. Such an omnidirectional passband can be realized in a different wavelength region with a proper design.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  2. K. J. Webb and M. Yang, “Subwavelength imaging with a multilayer silver film structure,” Opt. Lett. 31, 2130-2132 (2006).
    [CrossRef] [PubMed]
  3. P. A. Belov and H. Yang, “Subwavelength imaging at optical frequencies using a transmission device formed by a period layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
    [CrossRef]
  4. H. Shin and S. H. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
    [CrossRef]
  5. M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express 15, 508-523 (2007).
    [CrossRef] [PubMed]
  6. M. Bloemer, G. D'Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency for propagating and evanescent waves in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
    [CrossRef]
  7. J. L. Zhang, H. T. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Towards −1 effective index with one-dimensional metal-dielectric metamaterial: a quantitative analysis of the role of absorption losses,” Opt. Express 15, 7720-7729 (2007).
    [CrossRef] [PubMed]
  8. P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41-45 (1997).
    [CrossRef]
  9. H. Shin and S. H. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
    [CrossRef] [PubMed]
  10. M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, “Transparent, metallo-dielectric one dimensional photonic band gap structures,” J. Appl. Phys. 83, 2377-2383 (1998).
    [CrossRef]
  11. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
    [CrossRef]
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2007 (3)

2006 (4)

K. J. Webb and M. Yang, “Subwavelength imaging with a multilayer silver film structure,” Opt. Lett. 31, 2130-2132 (2006).
[CrossRef] [PubMed]

P. A. Belov and H. Yang, “Subwavelength imaging at optical frequencies using a transmission device formed by a period layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

H. Shin and S. H. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

H. Shin and S. H. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

1998 (2)

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, “Transparent, metallo-dielectric one dimensional photonic band gap structures,” J. Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

1997 (1)

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41-45 (1997).
[CrossRef]

Akozbek, N.

Belov, P. A.

P. A. Belov and H. Yang, “Subwavelength imaging at optical frequencies using a transmission device formed by a period layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Bloemer, M.

M. Bloemer, G. D'Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency for propagating and evanescent waves in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Bloemer, M. J.

M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express 15, 508-523 (2007).
[CrossRef] [PubMed]

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, “Transparent, metallo-dielectric one dimensional photonic band gap structures,” J. Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

Bowden, C. M.

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, “Transparent, metallo-dielectric one dimensional photonic band gap structures,” J. Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Cappeddu, M. G.

Centini, M.

D'Aguanno, G.

de Ceglia, D.

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, “Transparent, metallo-dielectric one dimensional photonic band gap structures,” J. Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Enoch, S.

Fan, S. H.

H. Shin and S. H. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

H. Shin and S. H. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

Fowler, M.

Gralak, B.

Haus, J. W.

Jiang, H. T.

Laude, V.

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41-45 (1997).
[CrossRef]

Lequime, M.

Mandatori, A.

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, “Transparent, metallo-dielectric one dimensional photonic band gap structures,” J. Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Mattiucci, N.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pethel, S. D.

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, “Transparent, metallo-dielectric one dimensional photonic band gap structures,” J. Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Scalora, M.

M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express 15, 508-523 (2007).
[CrossRef] [PubMed]

M. Bloemer, G. D'Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency for propagating and evanescent waves in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, “Transparent, metallo-dielectric one dimensional photonic band gap structures,” J. Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

Shin, H.

H. Shin and S. H. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

H. Shin and S. H. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

Sibilia, C.

Tayeb, G.

Tournois, P.

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41-45 (1997).
[CrossRef]

Webb, K. J.

Yang, H.

P. A. Belov and H. Yang, “Subwavelength imaging at optical frequencies using a transmission device formed by a period layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Yang, M.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Zhang, J. L.

Appl. Phys. Lett. (3)

H. Shin and S. H. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676-1678 (1998).
[CrossRef]

M. Bloemer, G. D'Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency for propagating and evanescent waves in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

J. Appl. Phys. (1)

M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, “Transparent, metallo-dielectric one dimensional photonic band gap structures,” J. Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Opt. Commun. (1)

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41-45 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

P. A. Belov and H. Yang, “Subwavelength imaging at optical frequencies using a transmission device formed by a period layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

H. Shin and S. H. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

Other (2)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

1 D MD stack with a symmetric arrangement. The dashed lines show a unit cell.

Fig. 2
Fig. 2

(a) Band structure of a 1 D MD stack. The gray zones and the black zones represent the allowed bands and gaps, respectively. The white line denotes the light line of the air. ε 1 = 5.8 , ε 2 = 1 ω p 2 ω 2 ( ω p = 11 f s 1 ) , d 1 = 60 nm , d 2 = 30 nm , and k p = ω p c . (b) EFCs at the frequencies in the second band. Only the values of k x above the light line of the air are considered. The labels indicate the frequencies in the unit of 2 π c d .

Fig. 3
Fig. 3

Schematic of a p- or s-polarized wave incident from a dielectric on a metal whose permittivity is negative. For a p-polarized (s-polarized) wave, E x ( H x ) and E z ( H z ) are the x and the z components of the electric (magnetic) field E ( H ) , respectively. The magnetic (electric) field is in the y direction, denoted by H y ( E y ) . S = E × H represents the power flow. The ⊗ indicates that H y or E y points inside the page. The vertical solid line denotes the boundary between the dielectric and the metal.

Fig. 4
Fig. 4

Distribution of the power flow in the x direction ( S x ) in a five-period MD stack illuminated by a Gaussian beam with the incident angle of 30°. The parameters of the stack are the same as those in Fig. 2a.

Fig. 5
Fig. 5

Simulated transmittances of (a) three-period and (b) six-period Ag–ZnS ( 30 nm 60 nm ) stack at different angles of incidence.

Fig. 6
Fig. 6

Simulated transmittances of a ten-period Zn S Mg F 2 ( 110 nm 84 nm ) stack at different angles of incidence.

Fig. 7
Fig. 7

Measured values of transmittance for the same stack as in Fig. 5a at different angles of incidence.

Fig. 8
Fig. 8

Simulated transmittances of a three-period (a) Ag Al 2 O 3 ( 30 nm 70 nm ) (b) and Ag–GaP ( 36 nm 60 nm ) stack at different angles of incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cos ( K z d ) = cos ( α 1 d 1 ) cos ( α 2 d 2 ) α 1 2 ε 2 2 + α 2 2 ε 1 2 2 α 1 α 2 ε 1 ε 2 sin ( α 1 d 1 ) sin ( α 2 d 2 ) ,

Metrics