Abstract

Reduction of second-order intermodulation distortions using chirped fiber Bragg gratings (CFBGs) as dispersion compensators is investigated for application to fiber-optic analog transmission. We investigate the effect of the group delay ripples of the CFBG on the second-order intermodulation distortions (IM2) for different modulation depths. Considering the relation of the spectrum width of optical signals and the ripple period of the CFBG, we found that the CFBG is fully effective to suppress IM2 in a high modulation depth regime.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582-595 (1982).
    [CrossRef]
  2. M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3, 481-483 (1991).
    [CrossRef]
  3. H. Gysel and M. Ramachandran, “Electrical predistortion to compensate for combined effect of laser chirp and fibre dispersion,” Electron. Lett. 27, 421-423 (1991).
    [CrossRef]
  4. D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
    [CrossRef]
  5. H. H. Lu, “Performance comparison between DCF and RDF dispersion compensation in fiber optical CATV systems,” IEEE Trans. Broadcast. 48, 370-373 (2002).
    [CrossRef]
  6. W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
    [CrossRef]
  7. H. H. Lu and C. T. Lee, “Dispersion compensation in externally modulated transport system using chirped fiber grating as well as large effective area fiber,” Opt. Eng. (Bellingham) 40, 656-657 (2001).
    [CrossRef]
  8. A. Martínez, D. Pastor, and J. Capmany, “Full distortion induced by dispersion evaluation and optical bandwidth constraining of fiber Bragg grating demultiplexers over analogue SCM systems,” Opt. Express 10, 1526-1533 (2002).
    [PubMed]
  9. Q. Ye, F. Liu, R. Qu, and Z. Fang, “The effect of the group delay ripple of chirped fiber grating on composite second-order in optical CATV system,” Opt. Commun. 247, 319-323 (2005).
    [CrossRef]
  10. S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit,” in Optical Fiber Communication Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper MF27.
  11. S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s,” IEICE Trans. Electron. E87-C, 1100-1105 (2004).
  12. S. Wakabayashi, A. Baba, A. Itou, and J. Adachi, “Design and fabrication of apodization profile in linearly chirped fiber Bragg gratings for wide band >35 nm and compact tunable dispersion compensator,” J. Opt. Soc. Am. B 25, 210-217 (2008).
    [CrossRef]
  13. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
    [CrossRef]

2008

2005

Q. Ye, F. Liu, R. Qu, and Z. Fang, “The effect of the group delay ripple of chirped fiber grating on composite second-order in optical CATV system,” Opt. Commun. 247, 319-323 (2005).
[CrossRef]

2004

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s,” IEICE Trans. Electron. E87-C, 1100-1105 (2004).

2002

2001

H. H. Lu and C. T. Lee, “Dispersion compensation in externally modulated transport system using chirped fiber grating as well as large effective area fiber,” Opt. Eng. (Bellingham) 40, 656-657 (2001).
[CrossRef]

1998

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

1997

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

1996

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

1991

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3, 481-483 (1991).
[CrossRef]

H. Gysel and M. Ramachandran, “Electrical predistortion to compensate for combined effect of laser chirp and fibre dispersion,” Electron. Lett. 27, 421-423 (1991).
[CrossRef]

1982

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582-595 (1982).
[CrossRef]

Adachi, J.

Anderson, C. J.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

Baba, A.

S. Wakabayashi, A. Baba, A. Itou, and J. Adachi, “Design and fabrication of apodization profile in linearly chirped fiber Bragg gratings for wide band >35 nm and compact tunable dispersion compensator,” J. Opt. Soc. Am. B 25, 210-217 (2008).
[CrossRef]

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s,” IEICE Trans. Electron. E87-C, 1100-1105 (2004).

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit,” in Optical Fiber Communication Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper MF27.

Bodeep, G. E.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3, 481-483 (1991).
[CrossRef]

Capmany, J.

Cavaciuti, A.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

Cole, M. J.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

Darcie, T. E.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3, 481-483 (1991).
[CrossRef]

Ennser, K.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

Fang, Z.

Q. Ye, F. Liu, R. Qu, and Z. Fang, “The effect of the group delay ripple of chirped fiber grating on composite second-order in optical CATV system,” Opt. Commun. 247, 319-323 (2005).
[CrossRef]

Frigo, N. J.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3, 481-483 (1991).
[CrossRef]

Garcia, G.

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

Gysel, H.

H. Gysel and M. Ramachandran, “Electrical predistortion to compensate for combined effect of laser chirp and fibre dispersion,” Electron. Lett. 27, 421-423 (1991).
[CrossRef]

Hasegawa, T.

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s,” IEICE Trans. Electron. E87-C, 1100-1105 (2004).

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit,” in Optical Fiber Communication Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper MF27.

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582-595 (1982).
[CrossRef]

Itou, A.

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582-595 (1982).
[CrossRef]

Kleefeld, J.

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582-595 (1982).
[CrossRef]

Kuo, C. Y.

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

Laming, R. I.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

Lee, C. T.

H. H. Lu and C. T. Lee, “Dispersion compensation in externally modulated transport system using chirped fiber grating as well as large effective area fiber,” Opt. Eng. (Bellingham) 40, 656-657 (2001).
[CrossRef]

Liu, F.

Q. Ye, F. Liu, R. Qu, and Z. Fang, “The effect of the group delay ripple of chirped fiber grating on composite second-order in optical CATV system,” Opt. Commun. 247, 319-323 (2005).
[CrossRef]

Loh, W. H.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

Lu, H. H.

H. H. Lu, “Performance comparison between DCF and RDF dispersion compensation in fiber optical CATV systems,” IEEE Trans. Broadcast. 48, 370-373 (2002).
[CrossRef]

H. H. Lu and C. T. Lee, “Dispersion compensation in externally modulated transport system using chirped fiber grating as well as large effective area fiber,” Opt. Eng. (Bellingham) 40, 656-657 (2001).
[CrossRef]

Marcuse, D.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3, 481-483 (1991).
[CrossRef]

Martínez, A.

Mathur, A.

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

Moriya, H.

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s,” IEICE Trans. Electron. E87-C, 1100-1105 (2004).

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit,” in Optical Fiber Communication Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper MF27.

Nisson, A.

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

Pastor, D.

Phillips, M. R.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3, 481-483 (1991).
[CrossRef]

Piehler, D.

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

Qu, R.

Q. Ye, F. Liu, R. Qu, and Z. Fang, “The effect of the group delay ripple of chirped fiber grating on composite second-order in optical CATV system,” Opt. Commun. 247, 319-323 (2005).
[CrossRef]

Ralston, J. D.

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

Ramachandran, M.

H. Gysel and M. Ramachandran, “Electrical predistortion to compensate for combined effect of laser chirp and fibre dispersion,” Electron. Lett. 27, 421-423 (1991).
[CrossRef]

Robinson, N.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

Suzuki, A.

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s,” IEICE Trans. Electron. E87-C, 1100-1105 (2004).

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit,” in Optical Fiber Communication Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper MF27.

Vaninetti, F.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

Wakabayashi, S.

S. Wakabayashi, A. Baba, A. Itou, and J. Adachi, “Design and fabrication of apodization profile in linearly chirped fiber Bragg gratings for wide band >35 nm and compact tunable dispersion compensator,” J. Opt. Soc. Am. B 25, 210-217 (2008).
[CrossRef]

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s,” IEICE Trans. Electron. E87-C, 1100-1105 (2004).

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit,” in Optical Fiber Communication Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper MF27.

Wang, X.

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s,” IEICE Trans. Electron. E87-C, 1100-1105 (2004).

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit,” in Optical Fiber Communication Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper MF27.

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582-595 (1982).
[CrossRef]

Ye, Q.

Q. Ye, F. Liu, R. Qu, and Z. Fang, “The effect of the group delay ripple of chirped fiber grating on composite second-order in optical CATV system,” Opt. Commun. 247, 319-323 (2005).
[CrossRef]

Zervas, M. N.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

Zou, X.

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

Electron. Lett.

H. Gysel and M. Ramachandran, “Electrical predistortion to compensate for combined effect of laser chirp and fibre dispersion,” Electron. Lett. 27, 421-423 (1991).
[CrossRef]

D. Piehler, X. Zou, C. Y. Kuo, A. Nisson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fibre in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33, 226-228 (1997).
[CrossRef]

IEEE J. Quantum Electron.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582-595 (1982).
[CrossRef]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3, 481-483 (1991).
[CrossRef]

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10-Gb/s systems using chirped fiber gratings,” IEEE Photon. Technol. Lett. 8, 944-946 (1996).
[CrossRef]

IEEE Trans. Broadcast.

H. H. Lu, “Performance comparison between DCF and RDF dispersion compensation in fiber optical CATV systems,” IEEE Trans. Broadcast. 48, 370-373 (2002).
[CrossRef]

IEICE Trans. Electron.

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion and dispersion slope compensator based on two twin chirped FBGs with temperature gradient for 160 Gbit/s,” IEICE Trans. Electron. E87-C, 1100-1105 (2004).

J. Opt. Soc. Am. B

Opt. Commun.

Q. Ye, F. Liu, R. Qu, and Z. Fang, “The effect of the group delay ripple of chirped fiber grating on composite second-order in optical CATV system,” Opt. Commun. 247, 319-323 (2005).
[CrossRef]

Opt. Eng. (Bellingham)

H. H. Lu and C. T. Lee, “Dispersion compensation in externally modulated transport system using chirped fiber grating as well as large effective area fiber,” Opt. Eng. (Bellingham) 40, 656-657 (2001).
[CrossRef]

Opt. Express

Other

S. Wakabayashi, A. Baba, H. Moriya, X. Wang, T. Hasegawa, and A. Suzuki, “Tunable dispersion slope compensator based on chirped FBGs with temperature distribution for 160 Gbit,” in Optical Fiber Communication Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper MF27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Reflectivity and relative group delay of the linearly CFBG.

Fig. 2
Fig. 2

Enlargement of the group delay measured in a linearly CFBG.

Fig. 3
Fig. 3

Experimental setup for a dual-tone analog transmission system with a 10 km long SMF with a dispersion compensator composed of a linearly CFBG.

Fig. 4
Fig. 4

Measured second-order intermodulation distortion (IM2) as a function of different modulation depth m.

Fig. 5
Fig. 5

Effective dispersion ( D L ) e calculated from measured IM2 as a function of different modulation depth m.

Fig. 6
Fig. 6

Spectral broadening and wavelength shift of optical signal (a) without and (b) with modulation.

Fig. 7
Fig. 7

Group delay ripples and dispersion locally determined for different spectrum width Δ λ .

Fig. 8
Fig. 8

(a) Group delay ripples of a nonapodized CFBG and (b) calculated effective dispersion as a function of modulation depth m.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

p 0 ( t ) = ξ i ( t ) ,
p r ( t ) = 10 α L 10 p 0 ( t L v ) ,
1 v = 1 v 0 + Δ λ ( 1 v ) λ = 1 v 0 + Δ λ D ,
Δ λ = ( λ 2 c ) Δ F i ( t ) ,
τ = L Δ λ D = ( D L λ 2 c ) Δ F i ( t L v 0 τ ) .
i ( t ) = ( I b I th ) m { cos ( 2 π f 1 t ) + cos ( 2 π f 2 t ) } .
p r ( t ) = 10 α L 10 ξ i ( t L v 0 τ ) = 10 α L 10 ξ ( I b I th ) m { cos ( 2 π f 1 ( t L v 0 ) + 2 π f 1 ( D L λ 2 c ) Δ F i ( t L v 0 τ ) ) + cos ( 2 π f 2 ( t L v 0 ) + 2 π f 2 ( D L λ 2 c ) Δ F i ( t L v 0 τ ) ) } .
β k = 2 π f k ( D L λ 2 c ) Δ F ( I b I th ) m ( k = 1 , 2 ) ,
IM 2 = 20 log [ ( β 1 + β 2 ) 2 ] [ d B c ] .
IM 2 = 20 log [ ( β 1 + β 2 ) 2 + 10 ( IM 2 0 20 ) ] [ d B c ] .
( D L ) e = c 2 π λ 2 Δ F ( I b I th ) m β 1 + β 2 f 1 + f 2 = c π λ 2 Δ F ( I b I th ) m 10 ( IM 2 20 ) 10 ( IM 2 0 20 ) f 1 + f 2 .
cos ( β cos θ ) = J 0 ( β ) + 2 n 1 J 2 n ( β ) ( 1 ) n cos 2 n θ ,
cos ( β sin θ ) = J 0 ( β ) + 2 n 1 J 2 n ( β ) cos 2 n θ ,
sin ( β cos θ ) = 2 n 0 J 2 n + 1 ( β ) ( 1 ) n cos ( 2 n + 1 ) θ ,
sin ( β sin θ ) = 2 n 0 J 2 n + 1 ( β ) cos ( 2 n + 1 ) θ ,
p r ( t ) = 10 α L 10 ξ I [ cos 2 π f 1 t { cos ( β 1 cos 2 π f 1 t ) cos ( β 1 cos 2 π f 2 t ) sin ( β 1 cos 2 π f 1 t ) sin ( β 1 cos 2 π f 2 t ) } sin 2 π f 1 t { sin ( β 1 cos 2 π f 1 t ) cos ( β 1 cos 2 π f 2 t ) cos ( β 1 cos 2 π f 1 t ) sin ( β 1 cos 2 π f 2 t ) } + cos 2 π f 2 t { cos ( β 2 cos 2 π f 1 t ) cos ( β 2 cos 2 π f 2 t ) sin ( β 2 cos 2 π f 1 t ) sin ( β 2 cos 2 π f 2 t ) } sin 2 π f 2 t { sin ( β 2 cos 2 π f 1 t ) cos ( β 2 cos 2 π f 2 t ) cos ( β 2 cos 2 π f 1 t ) sin ( β 2 cos 2 π f 2 t ) } ] 10 α L 10 ξ I [ { J 0 ( β 1 ) 2 J 0 ( β 1 ) J 2 ( β 1 ) } cos 2 π f 1 t 2 J 1 ( β 1 ) 2 cos 2 π f 2 t + J 1 ( β 1 ) 2 cos 2 π ( 2 f 1 f 2 ) t + { J 2 ( β 1 ) 2 J 0 ( β 1 ) J 2 ( β 1 ) } cos 2 π ( 2 f 2 f 1 ) t { 2 J 1 ( β 1 ) 2 + J 0 ( β 1 ) J 1 ( β 1 ) } cos 2 π ( 2 f 1 + f 2 ) t + { J 2 ( β 1 ) 2 J 0 ( β 1 ) J 2 ( β 1 ) } cos 2 π ( 2 f 2 + f 1 ) t J 0 ( β 1 ) J 2 ( β 1 ) cos 2 π ( 3 f 1 ) + J 2 ( β 1 ) 2 cos 2 π ( 3 f 1 + 2 f 2 ) t + J 2 ( β 1 ) 2 cos 2 π ( 3 f 1 2 f 2 ) t ] 10 α L 10 ξ I [ J 0 ( β 1 ) J 1 ( β 1 ) sin 4 π f 1 t + [ J 0 ( β 1 ) J 1 ( β 1 ) + J 1 ( β 1 ) J 2 ( β 1 ) ] sin 2 π ( f 1 + f 2 ) t + [ J 0 ( β 1 ) J 1 ( β 1 ) + J 1 ( β 1 ) J 2 ( β 1 ) ] sin 2 π ( f 1 f 2 ) t + J 1 ( β 1 ) J 2 ( β 1 ) sin 2 π ( 3 f 1 + f 2 ) t + J 1 ( β 1 ) J 2 ( β 1 ) sin 2 π ( 3 f 1 f 2 ) t ] + 10 α L 10 ξ I [ J 0 ( β 2 ) 2 J 0 ( β 2 ) J 2 ( β 2 ) cos 2 π f 2 t 2 J 1 ( β 2 ) 2 cos 2 π f 1 t + [ J 2 ( β 2 ) 2 J 0 ( β 2 ) J 2 ( β 2 ) ] cos 2 π ( 2 f 1 f 2 ) t J 1 ( β 2 ) 2 cos 2 π ( 2 f 2 f 1 ) t [ J 1 ( β 2 ) 2 + J 0 ( β 2 ) J 2 ( β 2 ) ] cos 2 π ( 2 f 1 + f 2 ) t J 1 ( β 2 ) 2 cos 2 π ( 2 f 2 + f 1 ) t J 0 ( β 2 ) J 2 ( β 2 ) cos 2 π ( 3 f 2 ) t + J 2 ( β 2 ) 2 cos 2 π ( 2 f 1 + 3 f 2 ) t + J 2 ( β 2 ) 2 cos 2 π ( 2 f 1 3 f 2 ) t ] 10 α L 10 ξ I [ J 0 ( β 2 ) J 1 ( β 2 ) sin 4 π f 2 t + [ J 0 ( β 2 ) J 1 ( β 2 ) + J 1 ( β 2 ) J 2 ( β 2 ) ] sin 2 π ( f 1 + f 2 ) t + [ J 0 ( β 2 ) J 1 ( β 2 ) + J 1 ( β 2 ) J 2 ( β 2 ) ] sin 2 π ( f 1 f 2 ) t + J 1 ( β 2 ) J 2 ( β 2 ) sin 2 π ( f 1 + 3 f 2 ) t + J 1 ( β 2 ) J 2 ( β 2 ) sin 2 π ( f 1 3 f 2 ) t ] 10 α L 10 ξ I [ { J 0 ( β 1 ) 2 J 0 ( β 1 ) J 2 ( β 1 ) 2 J 1 ( β 2 ) 2 } cos 2 π f 1 t + { J 0 ( β 2 ) 2 J 0 ( β 2 ) J 2 ( β 2 ) 2 J 1 ( β 1 ) 2 } cos 2 π f 2 t { J 0 ( β 1 ) J 1 ( β 1 ) + J 1 ( β 1 ) J 2 ( β 1 ) + J 0 ( β 2 ) J 1 ( β 2 ) + J 1 ( β 2 ) J 2 ( β 2 ) } sin 2 π ( f 1 f 2 ) t { J 0 ( β 1 ) J 1 ( β 1 ) + J 1 ( β 1 ) J 2 ( β 1 ) + J 0 ( β 2 ) J 1 ( β 2 ) + J 1 ( β 2 ) J 2 ( β 2 ) } sin 2 π ( f 1 + f 2 ) t J 0 ( β 1 ) J 1 ( β 1 ) sin 4 π f 1 t J 0 ( β 2 ) J 1 ( β 2 ) sin 4 π f 2 t { J 1 ( β 1 ) 2 + J 0 ( β 2 ) J 2 ( β 2 ) J 2 ( β 2 ) 2 } cos 2 π ( 2 f 1 f 2 ) t { J 1 ( β 2 ) 2 + J 0 ( β 1 ) J 2 ( β 1 ) J 2 ( β 1 ) 2 } cos 2 π ( f 1 2 f 2 ) t ] .
IM 2 = J 0 ( β 1 ) J 1 ( β 1 ) + J 1 ( β 1 ) J 2 ( β 1 ) + J 0 ( β 2 ) J 1 ( β 2 ) + J 1 ( β 2 ) J 2 ( β 2 ) J 0 ( β 1 ) 2 J 0 ( β 1 ) J 2 ( β 1 ) 2 J 1 ( β 2 ) 2 .
IM 2 J 1 ( β 1 ) + J 1 ( β 2 ) J 0 ( β 1 ) β 1 + β 2 2 .

Metrics