Abstract

Using different end-pump methods, short-pulse generation in an active continuous-wave-injected ring cavity with homogeneously broadened Yb3+:YAG crystal is studied numerically. In the derived model, the saturation of the pump absorption is taken into account. The effects of the seeding intensity, the seeding frequency, the amplifier length, and the efficiency of the acousto-optic modulator on the peak intensity using different end-pump methods are analyzed. The results show that, of the end-pump methods considered, the optimum method is the backreflection pump method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2001).
    [CrossRef]
  2. W. F. Krupke, “Ytterbium solid-state lasers--the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
    [CrossRef]
  3. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
    [CrossRef]
  4. G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, “Short pulse generation by use of an active multipass interometer,” IEEE J. Quantum Electron. 24, 580-584 (1988).
    [CrossRef]
  5. G. L. Bourdet, “Short-pulse generation at 10 μm in an active cw-injected ring laser cavity,” Appl. Opt. 42, 5457-5462 (2003).
    [CrossRef] [PubMed]
  6. Z. Huang and G. L. Bourdet, “Theoretical study of cw to short pulse conversion in an active cw-injected ring cavity with a Yb3+:YAG amplifier,” Appl. Opt. 46, 2703-2708 (2007).
    [CrossRef] [PubMed]
  7. G. L. Bourdet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966-971 (2000).
    [CrossRef]
  8. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975-1979 (2003).
    [CrossRef]
  9. M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
    [CrossRef]
  10. F. Thibault, D. Pelenc, F. Druon, and P. Georges, “Very efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 femtosecond laser,” in Conference on Lasers and Electro-Optics Europe (CLEO) 3, 2070-2072 (2005).

2007

2005

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

2003

2001

A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2001).
[CrossRef]

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

2000

W. F. Krupke, “Ytterbium solid-state lasers--the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
[CrossRef]

G. L. Bourdet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966-971 (2000).
[CrossRef]

1988

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, “Short pulse generation by use of an active multipass interometer,” IEEE J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

Balembois, F.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

Bass, M.

Boulon, G.

A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2001).
[CrossRef]

Bourdet, G. L.

Brenier, A.

A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2001).
[CrossRef]

Deng, P.

Dong, J.

Druon, F.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

F. Thibault, D. Pelenc, F. Druon, and P. Georges, “Very efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 femtosecond laser,” in Conference on Lasers and Electro-Optics Europe (CLEO) 3, 2070-2072 (2005).

Ferrand, B.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

Gan, F.

Georges, P.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

F. Thibault, D. Pelenc, F. Druon, and P. Georges, “Very efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 femtosecond laser,” in Conference on Lasers and Electro-Optics Europe (CLEO) 3, 2070-2072 (2005).

Graf, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

Harder, C.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

Huang, Z.

Huber, G.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

Jacquemet, C.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

Jacquemet, M.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

Janel, N.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

Keller, U.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers--the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
[CrossRef]

Kullberg, M. P.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

Mao, Y.

Mix, E.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

Moser, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

Muller, R. A.

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, “Short pulse generation by use of an active multipass interometer,” IEEE J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

Mullot, G. M.

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, “Short pulse generation by use of an active multipass interometer,” IEEE J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

Paschotta, R.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

Pelenc, D.

F. Thibault, D. Pelenc, F. Druon, and P. Georges, “Very efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 femtosecond laser,” in Conference on Lasers and Electro-Optics Europe (CLEO) 3, 2070-2072 (2005).

Petit, J.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

Spühler, G. J.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

Thibault, F.

F. Thibault, D. Pelenc, F. Druon, and P. Georges, “Very efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 femtosecond laser,” in Conference on Lasers and Electro-Optics Europe (CLEO) 3, 2070-2072 (2005).

Viana, B.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

Vinet, J. Y.

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, “Short pulse generation by use of an active multipass interometer,” IEEE J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

Vivien, D.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passive Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285-287 (2001).
[CrossRef]

IEEE J. Quantum Electron.

G. L. Bourdet, R. A. Muller, G. M. Mullot, and J. Y. Vinet, “Short pulse generation by use of an active multipass interometer,” IEEE J. Quantum Electron. 24, 580-584 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. F. Krupke, “Ytterbium solid-state lasers--the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
[CrossRef]

J. Alloys Compd.

A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323-324, 210-213 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Other

F. Thibault, D. Pelenc, F. Druon, and P. Georges, “Very efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 femtosecond laser,” in Conference on Lasers and Electro-Optics Europe (CLEO) 3, 2070-2072 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the ring cavity with Yb 3 + : YAG crystal.

Fig. 2
Fig. 2

Energy diagram of the Yb 3 + : YAG crystal.

Fig. 3
Fig. 3

Three different pump methods: (a) single-pass pump, (b) contrapropagating pump, (c) backreflection pump.

Fig. 4
Fig. 4

Peak intensities of the SPP and the BRP vary with the seeding intensity.

Fig. 5
Fig. 5

Peak intensities under different pump methods vary with the seeding wavelength.

Fig. 6
Fig. 6

Plots of the peak intensities of the SPP and the BRP vary with the amplifier length.

Fig. 7
Fig. 7

Peak intensities of different pump methods vary with the efficiency of the AOM.

Tables (1)

Tables Icon

Table 1 Spectral Parameters of Yb 3 + : YAG and Other Parameters

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

τ f d X u ( z ) d t = β p ( z ) [ f p X u ( z ) ] X u ( z ) [ X u ( z ) f l ] n β ( ν n , z ) = 0 ,
X u ( z ) = f p β p ( z ) + f l n β ( ν n , z ) 1 + β p ( z ) + n β ( ν n , z ) .
Δ N ( z ) = ( f l m + f u n ) [ X u ( z ) f l ] N 0 ,
Δ N p ( z ) = ( f l i + f u j ) [ f p X u ( z ) ] N 0 .
1 I ( ν n , z ) d I ( ν n , z ) d z = 1 β ( ν n , z ) d β ( ν n , z ) d z = g ( ν n ) [ X u ( z ) f l ] ,
1 I p ± ( z ) d I p ± ( z ) d z = 1 β p ± ( z ) d β p ± ( z ) d z = α p [ f p X u ( z ) ] ,
1 I ( ν n , z ) d I ( ν n , z ) d z = g ( ν n ) [ ( f p f l ) ± 1 α p I p ± ( z ) d I p ± ( z ) d z ] .
G ( ν 0 , z ) = g ( ν 0 ) [ ( f p f l ) z ± G p ± ( z ) α p ] ,
G ( ν 0 , z ) = ln I ( ν 0 , z ) I ( ν 0 , 0 ) = ln β ( ν 0 , z ) β ( ν 0 , 0 ) ,
Γ p ± ( z ) = ln I p ± ( z ) I p ± ( 0 ) = ln β p ± ( z ) β p ± ( 0 ) .
1 g ( ν n ) I ( ν n , z ) d I ( ν n , z ) d z = 1 g ( ν 0 ) I ( ν 0 , z ) d I ( ν 0 , z ) d z ,
G ( ν n , z ) = ξ ( ν n ) G ( ν 0 , z ) ,
I ( ν n , z ) = ( 1 η ) η n I s d ( ν 0 ) exp [ G ( ν 0 , z ) ξ ( ν n ) + G ( ν 0 , L ) i = 0 n 1 ξ ( ν i ) ] ,
β ( ν n , z ) = ( 1 η ) I s d ( ν 0 ) η n I s ( ν n ) exp [ G ( ν 0 , z ) ξ ( ν n ) + G ( ν 0 , L ) i = 0 n 1 ξ ( ν i ) ] ,
C p = β p + ( z ) β p ( z ) = β p + ( L ) β p ( L ) = β p + ( 0 ) β p ( L ) exp [ Γ p + ( L ) ] .
β p ( z ) = β p + ( z ) + C p β p + ( z ) .
( f p f l ) n β ( ν n , z ) + f p g ( ν n ) β ( ν n , z ) d β ( ν n , z ) d z = ( f p f l ) β p ( z ) f l α p β p ± ( z ) d β p ± ( z ) d z .
( f p f l ) ( 1 η ) I s d ( ν 0 ) g ( ν 0 ) n η n ξ ( ν n ) I s ( ν n ) exp [ G ( ν 0 , L ) i = 0 n 1 ξ ( ν i ) ] d d z exp [ G ( ν 0 , z ) ξ ( ν n ) ] = ( f p f l ) β p ( z ) f l α p β p ± ( z ) d β p ± ( z ) d z f p g ( ν 0 ) d ln β ( ν 0 , z ) d z .
Γ p + ( L ) = α p [ G ( ν 0 , L ) g ( ν 0 ) ( f p f l ) L ] .
( 1 η ) I s d ( ν 0 ) g ( ν 0 ) n η n ξ ( ν n ) I s ( ν n ) exp [ G ( ν 0 , L ) i = 0 n 1 ξ ( ν i ) ] { exp [ G ( ν 0 , L ) ξ ( ν n ) ] 1 } = β p + ( 0 ) α p ( 1 exp { α p [ G ( ν 0 , L ) g ( ν 0 ) ( f p f l ) L ] } ) G ( ν 0 , L ) g ( ν 0 ) f l L ,
( 1 η ) I s d ( ν 0 ) g ( ν 0 ) n η n ξ ( ν n ) I s ( ν n ) exp [ G ( ν 0 , L ) i = 0 n 1 ξ ( ν i ) ] { exp [ G ( ν 0 , L ) ξ ( ν n ) ] 1 } = β p + ( 0 ) + β p ( L ) α p ( 1 exp { α p [ G ( ν 0 , L ) g ( ν 0 ) ( f p f l ) L ] } ) G ( ν 0 , L ) g ( ν 0 ) f l L ,
( 1 η ) I s d ( ν 0 ) g ( ν 0 ) n η n ξ ( ν n ) I s ( ν n ) exp [ G ( ν 0 , L ) i = 0 n 1 ξ ( ν i ) ] { exp [ G ( ν 0 , L ) ξ ( ν n ) ] 1 } + G ( ν 0 , L ) g ( ν 0 ) + f l L = β p + ( 0 ) α p ( 1 exp { α p [ G ( ν 0 , L ) g ( ν 0 ) ( f p f l ) L ] } ) ( 1 + R m exp { α p [ G ( ν 0 , L ) g ( ν 0 ) ( f p f l ) L ] } ) ,
F ( t ) = I s d ( ν 0 ) η cos ( 2 π ν 1 t ) + ( 1 η ) n η n exp [ G ( ν 0 , L ) i = 0 n ξ ( ν i ) ] cos ( 2 π ν n t ) 2 .

Metrics