Abstract

We present detailed experimental and numerical analyses of nonlinear all-optical switching in long-period gratings (LPGs) in As2Se3 chalcogenide fiber. We characterize the nonlinear propagation of picosecond pulses through the LPG and observe nonlinear switching at optical peak powers around 55W. This is 2 orders of magnitude lower than previously demonstrated in silica fibers, owing to the very strong Kerr nonlinearity in As2Se3 chalcogenide glass. The results are discussed in the context of applications in passively mode-locked lasers and all-optical regenerators.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
    [Crossref]
  2. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
    [Crossref]
  3. P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
    [Crossref]
  4. D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304-312 (2000).
    [Crossref]
  5. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49-R61 (2003).
    [Crossref]
  6. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710-712 (2000).
    [Crossref]
  7. D. Pudo, E. C. Mägi, and B. J. Eggleton, “Long-period gratings in chalcogenide fibers,” Opt. Express 14, 3763-3766 (2006).
    [Crossref] [PubMed]
  8. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22, 1476-1478 (1997).
    [Crossref]
  9. I. C. M. Littler, L. B. Fu, E. C. Mägi, D. Pudo, and B. J. Eggleton, “Widely tunable, acousto-optic resonances in chalcogenide As2Se3 fiber,” Opt. Express 14, 8088-8095 (2006).
    [Crossref] [PubMed]
  10. S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 11, 1229-1231 (1999).
    [Crossref]
  11. H. S. Park, K. Y. Song, S. H. Yun, and B. K. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864-1868 (2002).
    [Crossref]
  12. Y. Jung, S. B. Lee, B. H. Lee, and K. Oh, “Acoustooptic tunable gap-type bandpass filter with a broad stopband,” IEEE Photon. Technol. Lett. 19, 1331-1333 (2007).
    [Crossref]
  13. K. J. Lee, D. I. Yeom, and B. Y. Kim, “Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter,” Opt. Express 15, 2987-2992 (2007).
    [Crossref] [PubMed]
  14. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
    [Crossref] [PubMed]
  15. J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
    [Crossref]
  16. K. Intrachat and J. N. Kutz, “Theory and simulation of passive modelocking dynamics using a long-period fiber grating,” IEEE J. Quantum Electron. 39, 1572-1578 (2003).
    [Crossref]
  17. T. Grujic, H. C. Nguyen, M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “All-optical regeneration based on a nonlinear long period grating,” Opt. Commun. 281, 1280-1285 (2008).
    [Crossref]
  18. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [Crossref]
  19. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119-121 (2002).
    [Crossref]
  20. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822-824 (2002).
    [Crossref]
  21. V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205-9221 (2007).
    [Crossref] [PubMed]
  22. H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571-572 (2006).
    [Crossref]
  23. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “2-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140-1142 (1989).
    [Crossref] [PubMed]
  24. M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration,” IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
    [Crossref]
  25. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142-148 (1997).
    [Crossref]
  26. H. C. Nguyen, D. I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching,” Appl. Phys. Lett. 92, 101127 (2008).
    [Crossref]
  27. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  28. G. P. Agrawal, Nonlinear Fiber Optics, Third ed. (Academic, 2001).
  29. S. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580-1583 (1982).
    [Crossref]
  30. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic-waves in 2-mode optical fibers,” J. Lightwave Technol. 6, 428-436 (1988).
    [Crossref]
  31. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637-7644 (2005).
    [Crossref] [PubMed]
  32. RSoft Design Group Inc., FemSIM 2.0 (2007).
  33. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
    [Crossref] [PubMed]
  34. K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
    [Crossref]

2008 (2)

T. Grujic, H. C. Nguyen, M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “All-optical regeneration based on a nonlinear long period grating,” Opt. Commun. 281, 1280-1285 (2008).
[Crossref]

H. C. Nguyen, D. I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching,” Appl. Phys. Lett. 92, 101127 (2008).
[Crossref]

2007 (4)

2006 (5)

I. C. M. Littler, L. B. Fu, E. C. Mägi, D. Pudo, and B. J. Eggleton, “Widely tunable, acousto-optic resonances in chalcogenide As2Se3 fiber,” Opt. Express 14, 8088-8095 (2006).
[Crossref] [PubMed]

D. Pudo, E. C. Mägi, and B. J. Eggleton, “Long-period gratings in chalcogenide fibers,” Opt. Express 14, 3763-3766 (2006).
[Crossref] [PubMed]

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571-572 (2006).
[Crossref]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration,” IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[Crossref]

K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
[Crossref]

2005 (1)

2004 (1)

2003 (2)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49-R61 (2003).
[Crossref]

K. Intrachat and J. N. Kutz, “Theory and simulation of passive modelocking dynamics using a long-period fiber grating,” IEEE J. Quantum Electron. 39, 1572-1578 (2003).
[Crossref]

2002 (3)

2000 (2)

1999 (1)

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 11, 1229-1231 (1999).
[Crossref]

1997 (5)

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
[Crossref] [PubMed]

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[Crossref]

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[Crossref]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22, 1476-1478 (1997).
[Crossref]

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142-148 (1997).
[Crossref]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[Crossref]

1990 (1)

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[Crossref]

1989 (1)

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic-waves in 2-mode optical fibers,” J. Lightwave Technol. 6, 428-436 (1988).
[Crossref]

1982 (1)

S. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580-1583 (1982).
[Crossref]

Aggarwal, I. D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, Third ed. (Academic, 2001).

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822-824 (2002).
[Crossref]

Andrejco, M.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[Crossref]

Andrejco, M. J.

Asobe, M.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142-148 (1997).
[Crossref]

Baker, N.

K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
[Crossref]

Baker, N. J.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[Crossref]

Bilodeau, F.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[Crossref]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic-waves in 2-mode optical fibers,” J. Lightwave Technol. 6, 428-436 (1988).
[Crossref]

Choi, D.

K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
[Crossref]

Choi, D. Y.

de Sterke, C. M.

H. C. Nguyen, D. I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching,” Appl. Phys. Lett. 92, 101127 (2008).
[Crossref]

T. Grujic, H. C. Nguyen, M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “All-optical regeneration based on a nonlinear long period grating,” Opt. Commun. 281, 1280-1285 (2008).
[Crossref]

Delong, K. W.

Digonnet, M. J. F.

Eggleton, B. J.

T. Grujic, H. C. Nguyen, M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “All-optical regeneration based on a nonlinear long period grating,” Opt. Commun. 281, 1280-1285 (2008).
[Crossref]

H. C. Nguyen, D. I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching,” Appl. Phys. Lett. 92, 101127 (2008).
[Crossref]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
[Crossref] [PubMed]

V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205-9221 (2007).
[Crossref] [PubMed]

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571-572 (2006).
[Crossref]

K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
[Crossref]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration,” IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[Crossref]

D. Pudo, E. C. Mägi, and B. J. Eggleton, “Long-period gratings in chalcogenide fibers,” Opt. Express 14, 3763-3766 (2006).
[Crossref] [PubMed]

I. C. M. Littler, L. B. Fu, E. C. Mägi, D. Pudo, and B. J. Eggleton, “Widely tunable, acousto-optic resonances in chalcogenide As2Se3 fiber,” Opt. Express 14, 8088-8095 (2006).
[Crossref] [PubMed]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637-7644 (2005).
[Crossref] [PubMed]

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[Crossref]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
[Crossref] [PubMed]

Engan, H. E.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic-waves in 2-mode optical fibers,” J. Lightwave Technol. 6, 428-436 (1988).
[Crossref]

Erdogan, T.

D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304-312 (2000).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[Crossref]

Espindola, R. P.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[Crossref]

Finsterbusch, K.

V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205-9221 (2007).
[Crossref] [PubMed]

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571-572 (2006).
[Crossref]

K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
[Crossref]

Fu, L. B.

Grujic, T.

T. Grujic, H. C. Nguyen, M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “All-optical regeneration based on a nonlinear long period grating,” Opt. Commun. 281, 1280-1285 (2008).
[Crossref]

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822-824 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119-121 (2002).
[Crossref]

Hill, K. O.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[Crossref]

Hodelin, J.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119-121 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822-824 (2002).
[Crossref]

Intrachat, K.

K. Intrachat and J. N. Kutz, “Theory and simulation of passive modelocking dynamics using a long-period fiber grating,” IEEE J. Quantum Electron. 39, 1572-1578 (2003).
[Crossref]

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49-R61 (2003).
[Crossref]

Jensen, S.

S. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580-1583 (1982).
[Crossref]

Johnson, D. C.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[Crossref]

Judkins, J. B.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[Crossref]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
[Crossref] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[Crossref]

Jung, Y.

Y. Jung, S. B. Lee, B. H. Lee, and K. Oh, “Acoustooptic tunable gap-type bandpass filter with a broad stopband,” IEEE Photon. Technol. Lett. 19, 1331-1333 (2007).
[Crossref]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kim, B. K.

Kim, B. Y.

K. J. Lee, D. I. Yeom, and B. Y. Kim, “Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter,” Opt. Express 15, 2987-2992 (2007).
[Crossref] [PubMed]

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 11, 1229-1231 (1999).
[Crossref]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22, 1476-1478 (1997).
[Crossref]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic-waves in 2-mode optical fibers,” J. Lightwave Technol. 6, 428-436 (1988).
[Crossref]

Kim, H. K.

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 11, 1229-1231 (1999).
[Crossref]

Kim, H. S.

Kino, G. S.

Kuhlmey, B. T.

H. C. Nguyen, D. I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching,” Appl. Phys. Lett. 92, 101127 (2008).
[Crossref]

Kutz, J. N.

K. Intrachat and J. N. Kutz, “Theory and simulation of passive modelocking dynamics using a long-period fiber grating,” IEEE J. Quantum Electron. 39, 1572-1578 (2003).
[Crossref]

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[Crossref]

Kwang, I. K.

Lamont, M. R. E.

T. Grujic, H. C. Nguyen, M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “All-optical regeneration based on a nonlinear long period grating,” Opt. Commun. 281, 1280-1285 (2008).
[Crossref]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
[Crossref] [PubMed]

V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205-9221 (2007).
[Crossref] [PubMed]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration,” IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[Crossref]

Lee, B. H.

Y. Jung, S. B. Lee, B. H. Lee, and K. Oh, “Acoustooptic tunable gap-type bandpass filter with a broad stopband,” IEEE Photon. Technol. Lett. 19, 1331-1333 (2007).
[Crossref]

Lee, B. W.

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 11, 1229-1231 (1999).
[Crossref]

Lee, K. J.

Lee, S. B.

Y. Jung, S. B. Lee, B. H. Lee, and K. Oh, “Acoustooptic tunable gap-type bandpass filter with a broad stopband,” IEEE Photon. Technol. Lett. 19, 1331-1333 (2007).
[Crossref]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[Crossref]

Lenz, G.

Littler, I. C. M.

Luther-Davies, B.

Luther-Davis, B.

K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
[Crossref]

Madden, S.

V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205-9221 (2007).
[Crossref] [PubMed]

K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
[Crossref]

Mägi, E. C.

Malo, B.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[Crossref]

Mizrahi, V.

Moss, D. J.

V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205-9221 (2007).
[Crossref] [PubMed]

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571-572 (2006).
[Crossref]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration,” IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[Crossref]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637-7644 (2005).
[Crossref] [PubMed]

Nguyen, H. C.

H. C. Nguyen, D. I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching,” Appl. Phys. Lett. 92, 101127 (2008).
[Crossref]

T. Grujic, H. C. Nguyen, M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “All-optical regeneration based on a nonlinear long period grating,” Opt. Commun. 281, 1280-1285 (2008).
[Crossref]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324-10329 (2007).
[Crossref] [PubMed]

V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205-9221 (2007).
[Crossref] [PubMed]

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571-572 (2006).
[Crossref]

Nguyen, V. Q.

Oh, K.

Y. Jung, S. B. Lee, B. H. Lee, and K. Oh, “Acoustooptic tunable gap-type bandpass filter with a broad stopband,” IEEE Photon. Technol. Lett. 19, 1331-1333 (2007).
[Crossref]

Park, H. S.

Pudo, D.

Rochette, M.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration,” IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[Crossref]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637-7644 (2005).
[Crossref] [PubMed]

Saifi, M. A.

Sanghera, J.

Sanghera, J. S.

Savin, S.

Shaw, H. J.

S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710-712 (2000).
[Crossref]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic-waves in 2-mode optical fibers,” J. Lightwave Technol. 6, 428-436 (1988).
[Crossref]

Shaw, L. B.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[Crossref]

Skinner, I.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[Crossref]

Slusher, R. E.

Song, K. Y.

Stark, J. B.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
[Crossref] [PubMed]

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[Crossref]

Stegall, D. B.

Stegeman, G. I.

Ta'eed, V. G.

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49-R61 (2003).
[Crossref]

Vengsarkar, A. M.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[Crossref]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
[Crossref] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[Crossref]

Vineberg, K. A.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[Crossref]

Weed, V. G.

K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
[Crossref]

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822-824 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119-121 (2002).
[Crossref]

Wysocki, P. F.

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[Crossref]

Yeom, D. I.

Yun, S. H.

Appl. Phys. Lett. (1)

H. C. Nguyen, D. I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching,” Appl. Phys. Lett. 92, 101127 (2008).
[Crossref]

Electron. Lett. (3)

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, “Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre,” Electron. Lett. 42, 571-572 (2006).
[Crossref]

K. Finsterbusch, N. Baker, V. G. Weed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide As2S3 rib waveguides,” Electron. Lett. 42, 1094-1095 (2006).
[Crossref]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26, 1270-1272 (1990).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Intrachat and J. N. Kutz, “Theory and simulation of passive modelocking dynamics using a long-period fiber grating,” IEEE J. Quantum Electron. 39, 1572-1578 (2003).
[Crossref]

S. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580-1583 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232-1245 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (5)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14, 822-824 (2002).
[Crossref]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration,” IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[Crossref]

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett. 11, 1229-1231 (1999).
[Crossref]

Y. Jung, S. B. Lee, B. H. Lee, and K. Oh, “Acoustooptic tunable gap-type bandpass filter with a broad stopband,” IEEE Photon. Technol. Lett. 19, 1331-1333 (2007).
[Crossref]

P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, 1343-1345 (1997).
[Crossref]

J. Lightwave Technol. (3)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[Crossref]

H. S. Park, K. Y. Song, S. H. Yun, and B. K. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864-1868 (2002).
[Crossref]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic-waves in 2-mode optical fibers,” J. Lightwave Technol. 6, 428-436 (1988).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49-R61 (2003).
[Crossref]

Opt. Commun. (1)

T. Grujic, H. C. Nguyen, M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “All-optical regeneration based on a nonlinear long period grating,” Opt. Commun. 281, 1280-1285 (2008).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142-148 (1997).
[Crossref]

Opt. Lett. (5)

Other (3)

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

G. P. Agrawal, Nonlinear Fiber Optics, Third ed. (Academic, 2001).

RSoft Design Group Inc., FemSIM 2.0 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of a LPG coupling a core mode into a copropagating cladding mode. (b) Transmission spectrum of the core mode through the LPG, illustrating the wavelength shift at high powers; nonlinear transmittance and power transfer characteristics of the LPG when the launch wavelength is (c) on- and (d) off-resonance (detuned) to longer wavelengths.

Fig. 2
Fig. 2

(a) Schematic of the experimental setup. The acoustic transducer is driven by the RF generator and generates an acoustic wave that propagates along the As 2 Se 3 fiber until absorbed at the oil drop; the LPG is formed in the region in between. (b) Setup of the pulsed source used in the nonlinear experiments.

Fig. 3
Fig. 3

Experimentally measured LPG spectrum fitted with simulated spectra with and without the additional 1.6 dB loss.

Fig. 4
Fig. 4

(a) Power transfer curve for the nonlinear pulse propagation without LPG, showing experimentally measured and numerically fitted data. The dotted line indicates linear transmission in the absence of TPA. The slight curvature indicates the presence of weak TPA; this is used to determine β TPA A eff . (b) Measured and simulated transmitted pulse spectra at various input peak powers, used to determine n 2 A eff .

Fig. 5
Fig. 5

(a) Transmittance curves for input pulses detuned to shorter wavelengths from resonance: δ λ = [ 1.5 , 1.0 , 0.5 , 0 ] nm . (b) Power transfer curves for corresponding δ λ , with superlinear behavior. The markers and curves represent experimentally measured and numerically calculated data, respectively.

Fig. 6
Fig. 6

(a) Transmittance curves for input pulses detuned to longer wavelengths from resonance: δ λ = [ 0.5 , 1.0 , 1.4 , 2.0 ] nm . (b) Power transfer curves for corresponding δ λ , with initial sublinear behavior. The markers and curves represent experimentally measured and numerically calculated data, respectively.

Fig. 7
Fig. 7

Measured and simulated output pulse spectra at an input peak power of approximately 70 W , at different detunings of the input pulse. As the input wavelength is increased to longer wavelengths and passes through the resonance ( λ 0 = 1552.0 nm ) , the tilt in the output spectrum reverses.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ β ( ω ) β 1 ( ω ) β 2 ( ω ) 2 π Λ .
Δ λ shift Δ λ width = n 2 L 0.8 λ 0 P A eff .
i A 1 Z + ( C 11 A 1 2 + 2 C 12 A 2 2 ) A 1 + κ A 2 + Δ 2 A 1 = 0 ,
i ( A 2 Z c Δ n g A 2 T ) + ( C 22 A 2 2 + 2 C 21 A 1 2 ) A 2 + κ A 1 Δ 2 A 2 = 0 ,
C i j = ( 2 π n 2 λ + i β TPA 2 ) ψ i 2 ψ j 2 d x d y ( ψ i 2 d x d y ) ( ψ j 2 d x d y ) ,
Δ n g c = 2 π ω a ω 0 ( 1 Λ a 1 Λ 0 ) .

Metrics