Abstract

We fabricated a series of glasses with the composition 94.7-χGeO2-5Al2O3-0.3Bi2O3-χPbO (χ=024mol.%). Characteristic absorption bands of bismuth centered at 500, 700, 800, and 1000nm were observed. Adding PbO was found to decrease the strength of bismuth absorption. The addition of 3%–4% PbO resulted in a 50% increase in lifetime, a 20-fold increase in quantum efficiency, and a 28-fold increase in the product of emission cross section and lifetime on the 0% PbO composition. We propose that the 800nm absorption band relates a different bismuth center than the other absorption bands.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23, 1026-1028 (1987).
    [CrossRef]
  2. M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
    [CrossRef]
  3. T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm,” IEEE J. Quantum Electron. 31, 1880-1889 (1995).
    [CrossRef]
  4. T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
    [CrossRef]
  5. M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
    [CrossRef]
  6. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys., Part 2 40, L279-L281 (2001).
    [CrossRef]
  7. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325-3326 (2003).
    [CrossRef]
  8. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005).
    [CrossRef]
  9. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
    [CrossRef]
  10. J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22, 1574-1577 (2007).
    [CrossRef]
  11. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88, 191912 (2006).
    [CrossRef]
  12. X.-G. Meng, J.-R. Qiu, M.-Y. Peng, D.-.P Chen, Q.-Z. Zhao, X.-W. Jiang, and C.-S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13, 1635-1642 (2005).
    [CrossRef] [PubMed]
  13. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
    [CrossRef]
  14. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth and aluminium codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998-2000 (2004).
    [CrossRef] [PubMed]
  15. X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268, 75-78 (2006).
    [CrossRef]
  16. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433-2435 (2005).
    [CrossRef] [PubMed]
  17. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
    [CrossRef]
  18. C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
    [CrossRef]
  19. N. C. Greenham, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89-96 (1995).
    [CrossRef]
  20. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
    [CrossRef]
  21. V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
    [CrossRef]
  22. J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
    [CrossRef]
  23. J. C. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59, 1133-1207 (1996).
    [CrossRef]
  24. K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
    [CrossRef] [PubMed]
  25. R. A. L. Vallée, M. Cotlet, J. Hofkens, F. C. D. Schryver, and K. Mullen, “Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations,” Macromolecules 36, 7752-7758 (2003).
    [CrossRef]
  26. G. Mauckner, K. T. T. Baier, T. Walter, and F. L. Sauer, “Temperature dependent lifetime distribution of the photoluminescence S-band in porous silicon,” J. Appl. Phys. 75, 4167-4170 (1993).
    [CrossRef]
  27. R. Chen, “Apparent stretched-exponential luminescence decay in crystalline solids,” J. Lumin. 102-103, 510-518 (2003).
    [CrossRef]
  28. J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85, 589-598 (2003).
    [CrossRef] [PubMed]
  29. A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).
  30. D. C. Johnston, “Stretched exponential relaxation arising from a continuous sum of exponential decays,” Phys. Rev. B 74, 184430 (2006).
    [CrossRef]
  31. P. Hetman, B. Szabat, K. Weron, and D. Wodzinski, “On the Rajagopal relaxation-time distribution and its relationship to the Kohlrausch-Williams-Watts relaxation function,” J. Non-Cryst. Solids 330, 66-74 (2003).
    [CrossRef]
  32. I. Svare, S. W. Martin, and F. Borsa, “Stretched exponentials with T-dependent exponents from fixed distributions of energy barriers for relaxation times in fast-ion conductors,” Phys. Rev. B 61, 228-233 (2000).
    [CrossRef]
  33. S. Kuck, K. Peterman, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+ doped garnates: lifetimes quantum efficiencies and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
    [CrossRef]
  34. X.-G. Meng, J.-R. Qiu, M.-Y. Peng, D.-P. Chen, Q.-Z. Zhao, X.-W. Jiang, and C.-S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628-1634 (2005).
    [CrossRef] [PubMed]
  35. Y. Ohishi, “Novel photonics materials for broadband lightwave processing,” in Photonics West (SPIE, 2007).

2007 (4)

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22, 1574-1577 (2007).
[CrossRef]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[CrossRef]

2006 (3)

D. C. Johnston, “Stretched exponential relaxation arising from a continuous sum of exponential decays,” Phys. Rev. B 74, 184430 (2006).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88, 191912 (2006).
[CrossRef]

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268, 75-78 (2006).
[CrossRef]

2005 (7)

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433-2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

X.-G. Meng, J.-R. Qiu, M.-Y. Peng, D.-.P Chen, Q.-Z. Zhao, X.-W. Jiang, and C.-S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13, 1635-1642 (2005).
[CrossRef] [PubMed]

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

X.-G. Meng, J.-R. Qiu, M.-Y. Peng, D.-P. Chen, Q.-Z. Zhao, X.-W. Jiang, and C.-S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628-1634 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

2004 (1)

2003 (6)

R. A. L. Vallée, M. Cotlet, J. Hofkens, F. C. D. Schryver, and K. Mullen, “Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations,” Macromolecules 36, 7752-7758 (2003).
[CrossRef]

R. Chen, “Apparent stretched-exponential luminescence decay in crystalline solids,” J. Lumin. 102-103, 510-518 (2003).
[CrossRef]

J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85, 589-598 (2003).
[CrossRef] [PubMed]

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

P. Hetman, B. Szabat, K. Weron, and D. Wodzinski, “On the Rajagopal relaxation-time distribution and its relationship to the Kohlrausch-Williams-Watts relaxation function,” J. Non-Cryst. Solids 330, 66-74 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325-3326 (2003).
[CrossRef]

2001 (3)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys., Part 2 40, L279-L281 (2001).
[CrossRef]

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
[CrossRef]

2000 (1)

I. Svare, S. W. Martin, and F. Borsa, “Stretched exponentials with T-dependent exponents from fixed distributions of energy barriers for relaxation times in fast-ion conductors,” Phys. Rev. B 61, 228-233 (2000).
[CrossRef]

1996 (2)

J. C. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59, 1133-1207 (1996).
[CrossRef]

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
[CrossRef]

1995 (4)

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm,” IEEE J. Quantum Electron. 31, 1880-1889 (1995).
[CrossRef]

N. C. Greenham, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

S. Kuck, K. Peterman, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+ doped garnates: lifetimes quantum efficiencies and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

1993 (2)

G. Mauckner, K. T. T. Baier, T. Walter, and F. L. Sauer, “Temperature dependent lifetime distribution of the photoluminescence S-band in porous silicon,” J. Appl. Phys. 75, 4167-4170 (1993).
[CrossRef]

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

1987 (1)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23, 1026-1028 (1987).
[CrossRef]

Adriaenssens, G. J.

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

Amezcua, A.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

Andriesh, A. M.

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

Arai, Y.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[CrossRef]

Aronne, A.

V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
[CrossRef]

Baier, K. T. T.

G. Mauckner, K. T. T. Baier, T. Walter, and F. L. Sauer, “Temperature dependent lifetime distribution of the photoluminescence S-band in porous silicon,” J. Appl. Phys. 75, 4167-4170 (1993).
[CrossRef]

Baumberg, J. J.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

Borsa, F.

I. Svare, S. W. Martin, and F. Borsa, “Stretched exponentials with T-dependent exponents from fixed distributions of energy barriers for relaxation times in fast-ion conductors,” Phys. Rev. B 61, 228-233 (2000).
[CrossRef]

Brocklesby, W. S.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

Champagnon, B.

V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
[CrossRef]

Chen, D.

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22, 1574-1577 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433-2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth and aluminium codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Chen, D.-.P

Chen, D.-P.

Chen, R.

R. Chen, “Apparent stretched-exponential luminescence decay in crystalline solids,” J. Lumin. 102-103, 510-518 (2003).
[CrossRef]

Cole, M. J.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

Cotlet, M.

R. A. L. Vallée, M. Cotlet, J. Hofkens, F. C. D. Schryver, and K. Mullen, “Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations,” Macromolecules 36, 7752-7758 (2003).
[CrossRef]

Curry, R.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Curry, R. J.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

Deol, R. S.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

Dianov, E. M.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

Dong, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[CrossRef]

Dowling, K.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

Dvoyrin, V. V.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

Feng, G.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[CrossRef]

Finlayson, C. E.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

French, P. M. W.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325-3326 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys., Part 2 40, L279-L281 (2001).
[CrossRef]

Furniss, D.

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

Greenham, N. C.

N. C. Greenham, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

Gregora, I.

V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
[CrossRef]

Grossel, M. C.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

Gur'yanov, A. N.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

Hanna, D. C.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

Hertogen, P.

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

Hetman, P.

P. Hetman, B. Szabat, K. Weron, and D. Wodzinski, “On the Rajagopal relaxation-time distribution and its relationship to the Kohlrausch-Williams-Watts relaxation function,” J. Non-Cryst. Solids 330, 66-74 (2003).
[CrossRef]

Hewak, D.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Hofkens, J.

R. A. L. Vallée, M. Cotlet, J. Hofkens, F. C. D. Schryver, and K. Mullen, “Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations,” Macromolecules 36, 7752-7758 (2003).
[CrossRef]

Huber, G.

S. Kuck, K. Peterman, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+ doped garnates: lifetimes quantum efficiencies and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

Hughes, M.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Iovu, M. S.

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23, 1026-1028 (1987).
[CrossRef]

Jiang, X.

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth and aluminium codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Jiang, X.-W.

Johnston, D. C.

D. C. Johnston, “Stretched exponential relaxation arising from a continuous sum of exponential decays,” Phys. Rev. B 74, 184430 (2006).
[CrossRef]

Jones, R.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

Kanamori, T.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
[CrossRef]

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Khonthon, S.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[CrossRef]

Kierdaszuk, B.

J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85, 589-598 (2003).
[CrossRef] [PubMed]

Kikushima, K.

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Komukai, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm,” IEEE J. Quantum Electron. 31, 1880-1889 (1995).
[CrossRef]

Kuck, S.

S. Kuck, K. Peterman, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+ doped garnates: lifetimes quantum efficiencies and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

Lee, K. C. B.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

Leveque-Fort, S.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

Lever, M. J.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

Lincoln, J. R.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

Mackechnie, C. J.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

Martin, S. W.

I. Svare, S. W. Martin, and F. Borsa, “Stretched exponentials with T-dependent exponents from fixed distributions of energy barriers for relaxation times in fast-ion conductors,” Phys. Rev. B 61, 228-233 (2000).
[CrossRef]

Mashinsky, V. M.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

Mauckner, G.

G. Mauckner, K. T. T. Baier, T. Walter, and F. L. Sauer, “Temperature dependent lifetime distribution of the photoluminescence S-band in porous silicon,” J. Appl. Phys. 75, 4167-4170 (1993).
[CrossRef]

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23, 1026-1028 (1987).
[CrossRef]

Meng, X.

Meng, X.-G.

Miyajima, Y.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm,” IEEE J. Quantum Electron. 31, 1880-1889 (1995).
[CrossRef]

Miyamoto, Y.

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Morimoto, S.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[CrossRef]

Mullen, K.

R. A. L. Vallée, M. Cotlet, J. Hofkens, F. C. D. Schryver, and K. Mullen, “Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations,” Macromolecules 36, 7752-7758 (2003).
[CrossRef]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325-3326 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys., Part 2 40, L279-L281 (2001).
[CrossRef]

Ohishi, Y.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88, 191912 (2006).
[CrossRef]

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
[CrossRef]

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Y. Ohishi, “Novel photonics materials for broadband lightwave processing,” in Photonics West (SPIE, 2007).

Oikawa, K.

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Payne, D. N.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23, 1026-1028 (1987).
[CrossRef]

Pearson, A.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

Peng, M.

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433-2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth and aluminium codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Peng, M.-Y.

Pernice, P.

V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
[CrossRef]

Peterman, K.

S. Kuck, K. Peterman, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+ doped garnates: lifetimes quantum efficiencies and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

Phillips, J. C.

J. C. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59, 1133-1207 (1996).
[CrossRef]

Pohlmann, U.

S. Kuck, K. Peterman, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+ doped garnates: lifetimes quantum efficiencies and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

Qiu, J.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22, 1574-1577 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433-2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth and aluminium codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Qiu, J.-R.

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23, 1026-1028 (1987).
[CrossRef]

Ren, J.

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22, 1574-1577 (2007).
[CrossRef]

Rutt, H.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Sakamoto, T.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
[CrossRef]

Sarkisov, P. D.

V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
[CrossRef]

Sauer, F. L.

G. Mauckner, K. T. T. Baier, T. Walter, and F. L. Sauer, “Temperature dependent lifetime distribution of the photoluminescence S-band in porous silicon,” J. Appl. Phys. 75, 4167-4170 (1993).
[CrossRef]

Sazio, P. J.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

Schryver, F. C. D.

R. A. L. Vallée, M. Cotlet, J. Hofkens, F. C. D. Schryver, and K. Mullen, “Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations,” Macromolecules 36, 7752-7758 (2003).
[CrossRef]

Seddon, A. B.

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

Shimizu, M.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
[CrossRef]

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Shutov, S. D.

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

Siegel, J.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

Sigaev, V. N.

V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
[CrossRef]

Smelyanskaya, E. N.

V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
[CrossRef]

Smith, D. C.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

Sudo, S.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
[CrossRef]

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Sugawa, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm,” IEEE J. Quantum Electron. 31, 1880-1889 (1995).
[CrossRef]

Suzuki, T.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88, 191912 (2006).
[CrossRef]

Svare, I.

I. Svare, S. W. Martin, and F. Borsa, “Stretched exponentials with T-dependent exponents from fixed distributions of energy barriers for relaxation times in fast-ion conductors,” Phys. Rev. B 61, 228-233 (2000).
[CrossRef]

Syrbu, N. N.

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

Szabat, B.

P. Hetman, B. Szabat, K. Weron, and D. Wodzinski, “On the Rajagopal relaxation-time distribution and its relationship to the Kohlrausch-Williams-Watts relaxation function,” J. Non-Cryst. Solids 330, 66-74 (2003).
[CrossRef]

Terunuma, Y.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
[CrossRef]

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Tropper, A. C.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

Umnikov, A. A.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

Vallée, R. A. L.

R. A. L. Vallée, M. Cotlet, J. Hofkens, F. C. D. Schryver, and K. Mullen, “Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations,” Macromolecules 36, 7752-7758 (2003).
[CrossRef]

Walker, P. S.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

Walter, T.

G. Mauckner, K. T. T. Baier, T. Walter, and F. L. Sauer, “Temperature dependent lifetime distribution of the photoluminescence S-band in porous silicon,” J. Appl. Phys. 75, 4167-4170 (1993).
[CrossRef]

Wang, C.

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

Wang, J.

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

Wang, X.

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268, 75-78 (2006).
[CrossRef]

Webb, S. E. D.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

Weron, K.

P. Hetman, B. Szabat, K. Weron, and D. Wodzinski, “On the Rajagopal relaxation-time distribution and its relationship to the Kohlrausch-Williams-Watts relaxation function,” J. Non-Cryst. Solids 330, 66-74 (2003).
[CrossRef]

Wlodarczyk, J.

J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85, 589-598 (2003).
[CrossRef] [PubMed]

Wodzinski, D.

P. Hetman, B. Szabat, K. Weron, and D. Wodzinski, “On the Rajagopal relaxation-time distribution and its relationship to the Kohlrausch-Williams-Watts relaxation function,” J. Non-Cryst. Solids 330, 66-74 (2003).
[CrossRef]

Wu, B.

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22, 1574-1577 (2007).
[CrossRef]

Xia, H.

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268, 75-78 (2006).
[CrossRef]

Yamada, M.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
[CrossRef]

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Yamamoto, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm,” IEEE J. Quantum Electron. 31, 1880-1889 (1995).
[CrossRef]

Yang, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[CrossRef]

Yang, I.

Yashkov, M. V.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

Yoshinaga, H.

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

Zeng, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[CrossRef]

Zhao, Q.-Z.

Zhou, S.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[CrossRef]

Zhu, B.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[CrossRef]

Zhu, C.

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433-2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth and aluminium codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Zhu, C.-S.

Appl. Phys. Lett. (5)

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82, 3325-3326 (2003).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90, 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88, 191912 (2006).
[CrossRef]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91, 061919 (2007).
[CrossRef]

Biophys. J. (2)

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265-1274 (2001).
[CrossRef] [PubMed]

J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85, 589-598 (2003).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

N. C. Greenham, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89-96 (1995).
[CrossRef]

Electron. Lett. (1)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett. 23, 1026-1028 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm,” IEEE J. Quantum Electron. 31, 1880-1889 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65μm,” IEEE Photonics Technol. Lett. 8, 349-351 (1996).
[CrossRef]

M. Yamada, M. Shimizu, T. Kanamori, Y. Ohishi, Y. Terunuma, K. Oikawa, H. Yoshinaga, K. Kikushima, Y. Miyamoto, and S. Sudo, “Low-noise and high-power Pr3+-doped fluoride fiber amplifier,” IEEE Photonics Technol. Lett. 7, 869-871 (1995).
[CrossRef]

J. Appl. Phys. (2)

J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066-8075 (1993).
[CrossRef]

G. Mauckner, K. T. T. Baier, T. Walter, and F. L. Sauer, “Temperature dependent lifetime distribution of the photoluminescence S-band in porous silicon,” J. Appl. Phys. 75, 4167-4170 (1993).
[CrossRef]

J. Lumin. (1)

R. Chen, “Apparent stretched-exponential luminescence decay in crystalline solids,” J. Lumin. 102-103, 510-518 (2003).
[CrossRef]

J. Mater. Res. (1)

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22, 1574-1577 (2007).
[CrossRef]

J. Mod. Opt. (1)

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52, 955-964 (2005).
[CrossRef]

J. Non-Cryst. Solids (4)

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351, 2388-2393 (2005).
[CrossRef]

V. N. Sigaev, I. Gregora, P. Pernice, B. Champagnon, E. N. Smelyanskaya, A. Aronne, and P. D. Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136-144 (2001).
[CrossRef]

P. Hetman, B. Szabat, K. Weron, and D. Wodzinski, “On the Rajagopal relaxation-time distribution and its relationship to the Kohlrausch-Williams-Watts relaxation function,” J. Non-Cryst. Solids 330, 66-74 (2003).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

A. B. Seddon, D. Furniss, M. S. Iovu, S. D. Shutov, N. N. Syrbu, A. M. Andriesh, P. Hertogen, and G. J. Adriaenssens, “Optical absorption and visible luminescence in Ga-La-S-O glass doped with Pr3+ ions,” J. Optoelectron. Adv. Mater. 5, 1107-1113 (2003).

Jpn. J. Appl. Phys., Part 2 (1)

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys., Part 2 40, L279-L281 (2001).
[CrossRef]

Macromolecules (1)

R. A. L. Vallée, M. Cotlet, J. Hofkens, F. C. D. Schryver, and K. Mullen, “Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations,” Macromolecules 36, 7752-7758 (2003).
[CrossRef]

Opt. Commun. (1)

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268, 75-78 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (3)

I. Svare, S. W. Martin, and F. Borsa, “Stretched exponentials with T-dependent exponents from fixed distributions of energy barriers for relaxation times in fast-ion conductors,” Phys. Rev. B 61, 228-233 (2000).
[CrossRef]

S. Kuck, K. Peterman, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+ doped garnates: lifetimes quantum efficiencies and emission cross sections,” Phys. Rev. B 51, 17323-17331 (1995).
[CrossRef]

D. C. Johnston, “Stretched exponential relaxation arising from a continuous sum of exponential decays,” Phys. Rev. B 74, 184430 (2006).
[CrossRef]

Quantum Electron. (1)

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

J. C. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59, 1133-1207 (1996).
[CrossRef]

Other (1)

Y. Ohishi, “Novel photonics materials for broadband lightwave processing,” in Photonics West (SPIE, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Absorption spectra of GAPB glasses with various PbO concentrations. The identified bismuth absorption bands are indicated with arrows. Inset shows a close-up of the weakly absorbing samples.

Fig. 2
Fig. 2

(a) PL spectra, excited at 974 nm , of GAPB glasses with various PbO concentrations. (b) Deconvolution of the emission spectrum of the glass with a 0% PbO content with two Gaussians.

Fig. 3
Fig. 3

PL spectra, excited at 514, 700, 800, and 974 nm , of GAPB glasses with a 20% PbO content.

Fig. 4
Fig. 4

Emission FWHM as a function of the PbO content for various excitation wavelengths. Curves are a guide for the eye.

Fig. 5
Fig. 5

Emission decay profiles of GAPB glasses with PbO contents of 3% and 22%.

Fig. 6
Fig. 6

Emission lifetime, detected at the emission peak, as a function of the PbO content for excitation wavelengths of 514, 700, 800, and 974 nm . Curves are a guide for the eye.

Fig. 7
Fig. 7

Lifetime spectra of 5% PbO GAPB glass for excitation wavelengths of 514, 700, 800, and 974 nm . Curves are a guide for the eye.

Fig. 8
Fig. 8

QE and σ em τ as a function of the PbO content. Curves are a guide for the eye.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η QE = λ I PL ( λ ) C ( λ ) d λ λ I sphere ( λ ) C ( λ ) d λ λ I sample ( λ ) C ( λ ) d λ .
I ( t ) = y 0 + I 0 exp ( ( t τ 0 ) β ) ,
σ em = ln 2 π λ 0 2 4 π n 2 τ rad Δ v ,

Metrics