Abstract

The coupling between excited electron-hole pairs in semiconductor active layers and surface plasmon polaritons in metallo-dielectric stacks is investigated. These structures can be used to engineer the surface-plasmon dispersion properties so as to introduce tunable singularities in the photonic density of modes, and hence in the recombination rate of nearby active media. A detailed theoretical study of this effect is presented together with the experimental demonstration of geometrically tunable increased recombination in GaNAlGaN quantum wells via near-UV photoluminescence measurements. If combined with a suitable geometry to efficiently scatter the emitted surface waves into radiation, this approach can be used for light-emission efficiency enhancement at tunable wavelengths.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. K. H. Drexhage, “Interaction of light with macromolecular dye layers,” in Progress in Optics, Vol. 12, E.Wolf, ed. (North Holland, 1974), pp. 163-232.
    [CrossRef]
  3. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, Vol. XXXVII, I.Prigogine and S.A.Rice, eds. (Wiley, 1978), pp. 1-66.
    [CrossRef]
  4. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195-287 (1984).
    [CrossRef]
  5. W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
    [CrossRef]
  6. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999).
    [CrossRef]
  7. W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170-2182 (1999).
    [CrossRef]
  8. J. Vučković, M. Lončar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
    [CrossRef]
  9. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
    [CrossRef]
  10. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
    [CrossRef] [PubMed]
  11. Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
    [CrossRef]
  12. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
    [CrossRef]
  13. T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13, 5522-5527 (2005).
    [CrossRef] [PubMed]
  14. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
    [CrossRef]
  15. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
    [CrossRef]
  16. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
    [CrossRef]
  17. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
    [CrossRef]
  18. J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007).
    [CrossRef]
  19. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549-10556 (2000).
    [CrossRef]
  20. D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221-1231 (2005).
    [CrossRef] [PubMed]
  21. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
    [CrossRef] [PubMed]
  22. R. Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87, 111104 (2005).
    [CrossRef]
  23. J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006).
    [CrossRef]
  24. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]
  25. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
    [CrossRef] [PubMed]
  26. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  27. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  28. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
    [CrossRef]
  29. J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007).
    [CrossRef]
  30. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007), Chap. 4.
  31. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995), Chap. 13.
  32. Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
    [CrossRef]
  33. J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
    [CrossRef]
  34. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430 (2007).
    [CrossRef] [PubMed]

2007

Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007).
[CrossRef]

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430 (2007).
[CrossRef] [PubMed]

2006

J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
[CrossRef]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

2005

D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221-1231 (2005).
[CrossRef] [PubMed]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13, 5522-5527 (2005).
[CrossRef] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

R. Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87, 111104 (2005).
[CrossRef]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

2003

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

2002

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

2001

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

2000

J. Vučković, M. Lončar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

1999

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170-2182 (1999).
[CrossRef]

1998

W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

1997

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

1984

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195-287 (1984).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Ambacher, O.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

An, J.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

Angerer, H.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430 (2007).
[CrossRef] [PubMed]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Bao, J.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007).
[CrossRef]

Barnes, W. L.

Belyanin, A.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007).
[CrossRef]

Bhattacharyya, A.

J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
[CrossRef]

Biteen, J. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Brunner, D.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Bustarret, E.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Cabalu, J. S.

J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
[CrossRef]

Capasso, F.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, Vol. XXXVII, I.Prigogine and S.A.Rice, eds. (Wiley, 1978), pp. 1-66.
[CrossRef]

Chen, C. Y.

Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Chen, J.

J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006).
[CrossRef]

Cheng, C.

J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Chuang, S. L.

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995), Chap. 13.

Chumanov, G.

D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221-1231 (2005).
[CrossRef] [PubMed]

Collins, C. J.

J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
[CrossRef]

DenBaars, S. P.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Dimitrov, R.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Ding, J.

J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006).
[CrossRef]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430 (2007).
[CrossRef] [PubMed]

Drexhage, K. H.

K. H. Drexhage, “Interaction of light with macromolecular dye layers,” in Progress in Optics, Vol. 12, E.Wolf, ed. (North Holland, 1974), pp. 163-232.
[CrossRef]

Evanoff, D. D.

D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221-1231 (2005).
[CrossRef] [PubMed]

Everitt, H. O.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Fan, S.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

Fan, Y. X.

J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Freudenberg, F.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Friel, I.

J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
[CrossRef]

Fujita, S.

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

Hopler, R.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Huang, C. F.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
[CrossRef]

Huang, J. J.

Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
[CrossRef]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Inoue, K.

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Izumi, T.

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kaneta, A.

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Kawakami, Y.

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Keller, S.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Komninou, Ph.

J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
[CrossRef]

Kuroda, T.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Lai, C. W.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

Lee, C.-W.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Lewis, N. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430 (2007).
[CrossRef] [PubMed]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Loncar, M.

J. Vučković, M. Lončar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

Lu, Y. C.

Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

Mates, T.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007).
[CrossRef]

Mertens, H.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Mishra, U. K.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Moustakas, T. D.

J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Neal, T. D.

Neogi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Okamoto, K.

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13, 5522-5527 (2005).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Omae, K.

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Ong, H. C.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

Paiella, R.

R. Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87, 111104 (2005).
[CrossRef]

Polman, A.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, Vol. XXXVII, I.Prigogine and S.A.Rice, eds. (Wiley, 1978), pp. 1-66.
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Saijou, S.

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Scherer, A.

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13, 5522-5527 (2005).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

J. Vučković, M. Lončar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

Shen, N. H.

J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006).
[CrossRef]

Shin, H.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, Vol. XXXVII, I.Prigogine and S.A.Rice, eds. (Wiley, 1978), pp. 1-66.
[CrossRef]

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Stutzmann, M.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Tackeuchi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Tang, T. Y.

Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
[CrossRef]

Thomidis, C.

J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
[CrossRef]

Troccoli, M.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007).
[CrossRef]

Van Duyne, R. P.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

Vuckovic, J.

J. Vučković, M. Lončar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

Wang, H. T.

J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Yablonovitch, E.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

Yang, C. C.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007), Chap. 4.

Yeh, D. M.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
[CrossRef]

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007), Chap. 4.

Yu, N.

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007).
[CrossRef]

Appl. Phys. Lett.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
[CrossRef]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

R. Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87, 111104 (2005).
[CrossRef]

J. Chen, N. H. Shen, C. Cheng, Y. X. Fan, J. Ding, and H. T. Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89, 051916 (2006).
[CrossRef]

J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91, 131103 (2007).
[CrossRef]

Chem. Phys. Chem.

D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” Chem. Phys. Chem. 6, 1221-1231 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. Vučković, M. Lončar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131-1144 (2000).
[CrossRef]

J. Appl. Phys.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

J. S. Cabalu, A. Bhattacharyya, C. Thomidis, I. Friel, T. D. Moustakas, C. J. Collins, and Ph. Komninou, “High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy,” J. Appl. Phys. 100, 104506 (2006).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

J. Phys. Chem. B

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Opt. Express

Phys. Rep.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Phys. Rev. B

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564-11567 (1999).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[CrossRef] [PubMed]

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007).
[CrossRef]

Phys. Status Solidi A

Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, “Radiative and nonradiative recombination processes in GaN-based semiconductors,” Phys. Status Solidi A 183, 41 (2001).
[CrossRef]

Science

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430 (2007).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Other

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2007), Chap. 4.

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995), Chap. 13.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

K. H. Drexhage, “Interaction of light with macromolecular dye layers,” in Progress in Optics, Vol. 12, E.Wolf, ed. (North Holland, 1974), pp. 163-232.
[CrossRef]

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, Vol. XXXVII, I.Prigogine and S.A.Rice, eds. (Wiley, 1978), pp. 1-66.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SPP dispersion curves of (a), a single Ag film and (b), a ( 6 nm ) Ag ( 9 nm ) Ti O 2 ( 25 nm ) Au Ti O 2 stack on a GaN substrate. The dashed straight line in each plot is the light line in GaN. Also shown in the inset of each graph is the transverse field component of a representative SPP mode [the mode at k = 80 μ m 1 from the single dispersion curve of (a) and from the curve denoted by the dotted circle in (b)]. These field profiles were computed by solving Maxwell’s equations in all layers involved and matching the solutions with the electromagnetic boundary conditions.

Fig. 2
Fig. 2

(a) Spontaneous-emission-rate enhancement factor for a single Ag film on a nitride light-emitting structure, plotted as a log10-scale color map on the k - ω plane. (b) Same as (a) for the metallo-dielectric stack of Fig. 1b. (c) Spontaneous-emission-rate enhancement factor of the single-Ag configuration of (a) integrated over k and plotted versus free-space wavelength λ, assuming a spacer thickness between the active layer and the Ag film of 10, 8, and 6 nm (in order of increasing peak enhancement). (d) Same as (c) for the metallo-dielectric stack of Fig. 1b. The small periodic modulation observed in the long-wavelength range of (c) and (d) is numerical noise due to the finite grid size used in the integration of (a) and (b).

Fig. 3
Fig. 3

(a) Spontaneous-emission-rate enhancement factor for a single Al film on a nitride light-emitting structure, assuming a spacer thickness of 8 nm , plotted as a log10-scale color map on the k - ω plane. (b) Same as (a) for a ( 4 nm ) Al ( 10 nm ) Hf O 2 ( 10 nm ) Ag Hf O 2 stack. (c) Spontaneous-emission-rate enhancement factor of the single-Al configuration of (a) integrated over k and plotted versus free-space wavelength λ, assuming a spacer thickness between the active layer and the Al film of 10, 8, and 6 nm (in order of increasing peak enhancement). (d) Same as (c) for the metallo-dielectric stack of (b).

Fig. 4
Fig. 4

(a) Measured PL spectra of three adjacent samples from the same Ga N Al Ga N quantum-well structure: One uncoated, one coated with a single Al film, and one coated with a metallo-dielectric stack designed to reproduce that of Fig. 3. (b) PL spectra of two other adjacent samples from the same wafer: One uncoated and one coated with a similar metallo-dielectric stack (with a thinner Al film). Inset: Arrhenius plot of the integrated PL intensity from a reference uncoated sample.

Fig. 5
Fig. 5

(a) Emission-intensity ratio between the reference uncoated sample and the multiple-layer sample of Fig. 4a (solid curve), between the reference sample and the multiple-layer sample of Fig. 4b (dashed-dotted curve), and between the reference sample and the Al-coated sample (dashed curve). (b) Theoretical emission-intensity ratios for the three structures of (a), computed as discussed in the text.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Γ = ω 2 Im ( p * E ) ,
F = Re 0 d k 3 2 ( k k sub ) 3 k sub 2 k 2 ( 1 + r p ) ,
F = Re 0 d k 3 4 k k sub k sub 2 k 2 { ( 1 + r s ) + [ 1 ( k k sub ) 2 ] ( 1 r p ) } .
r s ( p ) = M 21 s ( p ) M 11 s ( p ) ,
η = Γ 0 Γ 0 + Γ nr + Γ SPP η extr rad + Γ SPP Γ 0 + Γ nr + Γ SPP η extr SPP ,
η = η int η extr rad = Γ 0 Γ 0 + Γ nr η extr rad ,
η η = Γ 0 Γ 0 + ( F Γ 0 Γ 0 ) η extr SPP η extr rad 1 + ( F 1 ) η int .

Metrics