Abstract

We present a new theoretical scheme for a high-power Er3+-doped fiber amplifier assisted with a long period grating (LPG). This cladding-pumped amplifier is predicted to generate up to 2.25kW of continuous-wave output power at 1531nm with a power conversion efficiency of 0.83. This device consists of an Er3+-doped cladding and an undoped core pumped with a high-power laser at a wavelength of 1480nm. The LPG imprinted in the fiber core transfers a weak input signal propagating in the core mode of a single-mode fiber into a predetermined cladding mode, dramatically increasing the effective mode-area of the signal and the threshold powers for unwanted nonlinear effects such as stimulated Raman and Brillouin scattering. Depending on the choice of the cladding mode used for amplification, a second LPG imprinted at the end of the Er3+-doped fiber may be used to transfer the amplified signal into a large core output fiber with high efficiency, providing a high-quality output beam in a fundamental mode.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Loester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3, 1182-1186 (1964).
    [CrossRef]
  2. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990-2001 (1998).
    [CrossRef]
  3. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378-380 (1997).
    [CrossRef] [PubMed]
  4. G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393-394 (1997).
    [CrossRef]
  5. Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39, 1717-1719 (2003).
    [CrossRef]
  6. C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
    [CrossRef]
  7. H. L. Offerhaus, N. G. Broderick, C. D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, “High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber,” Opt. Lett. 23, 1683-1685 (1998).
    [CrossRef]
  8. U. Griebner, R. Koch, H. Schonnagel, and R. Grunwald, “Efficient laser operation with nearly diffraction-limited output from a diode-pumped heavily Nd-doped multimode fiber,” Opt. Lett. 21, 266-268 (1996).
    [CrossRef] [PubMed]
  9. O. G. Okhotnikov and J. M. Sousa, “Flared single-transverse-mode fibre amplifier,” Electron. Lett. 35, 1011-1013 (1999).
    [CrossRef]
  10. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470-472 (2004).
    [CrossRef]
  11. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  12. J. M. Fini, “Design of large-mode-area amplifier fibers resistant to bend-induced distortion,” J. Opt. Soc. Am. B 24, 1669-1676 (2007).
    [CrossRef]
  13. S. Ramachandran, J. M. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797-1799 (2006).
    [CrossRef] [PubMed]
  14. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  15. A. K. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989).
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  17. V. I. Kovalev and R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 2022-2024 (2002).
    [CrossRef]
  18. A. Liu, “Suppresing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient,” Opt. Express 15, 977-984 (2007).
    [CrossRef] [PubMed]
  19. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  20. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  21. D. Cotter, “Transient stimulated Brillouin scattering in long single-mode fibre,” Electron. Lett. 18, 504-506 (1982).
    [CrossRef]
  22. A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, and F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123-3125 (2005).
    [CrossRef] [PubMed]
  23. P. C. Becker, N. A. Olsson, and J. B. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1999).

2007 (2)

2006 (1)

2005 (1)

2004 (2)

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470-472 (2004).
[CrossRef]

2003 (1)

Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39, 1717-1719 (2003).
[CrossRef]

2002 (1)

2000 (1)

1999 (1)

O. G. Okhotnikov and J. M. Sousa, “Flared single-transverse-mode fibre amplifier,” Electron. Lett. 35, 1011-1013 (1999).
[CrossRef]

1998 (2)

1997 (3)

D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378-380 (1997).
[CrossRef] [PubMed]

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393-394 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1996 (1)

1982 (1)

D. Cotter, “Transient stimulated Brillouin scattering in long single-mode fibre,” Electron. Lett. 18, 504-506 (1982).
[CrossRef]

1964 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Alegria, C.

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

Alvarez-Chavez, J. A.

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

Annunziata, F.

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. B. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1999).

Broderick, N. G.

Caplen, J.

Caplen, J. E.

Chen, X.

Codermard, C.

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

Cotter, D.

D. Cotter, “Transient stimulated Brillouin scattering in long single-mode fibre,” Electron. Lett. 18, 504-506 (1982).
[CrossRef]

Dimarcello, F. V.

Dong, L.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Fini, J. M.

Fu, L.

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

Ghalmi, S.

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989).

Goldberg, L.

Griebner, U.

Grunwald, R.

Harrison, R. G.

Ibsen, M.

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

Jeong, Y.

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470-472 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39, 1717-1719 (2003).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kliner, D. A. V.

Kobyakov, A.

Koch, R.

Koplow, J. P.

Kovalev, V. I.

Lees, G. P.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393-394 (1997).
[CrossRef]

Li, M.-J.

Liu, A.

Loester, C. J.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

Minelly, J. D.

Monberg, E.

Newson, T. P.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393-394 (1997).
[CrossRef]

Nicholson, J. M.

Nilsson, J.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470-472 (2004).
[CrossRef]

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39, 1717-1719 (2003).
[CrossRef]

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990-2001 (1998).
[CrossRef]

Offerhaus, H. L.

Okhotnikov, O. G.

O. G. Okhotnikov and J. M. Sousa, “Flared single-transverse-mode fibre amplifier,” Electron. Lett. 35, 1011-1013 (1999).
[CrossRef]

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. B. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1999).

Payne, D. N.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470-472 (2004).
[CrossRef]

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990-2001 (1998).
[CrossRef]

Penty, R. V.

Ramachandran, S.

Richardson, C. D. J.

Richardson, D. J.

Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39, 1717-1719 (2003).
[CrossRef]

D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378-380 (1997).
[CrossRef] [PubMed]

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393-394 (1997).
[CrossRef]

Ruffin, A. B.

Sahu, J. K.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470-472 (2004).
[CrossRef]

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39, 1717-1719 (2003).
[CrossRef]

Sammut, R.

Schonnagel, H.

Simpson, J. B.

P. C. Becker, N. A. Olsson, and J. B. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1999).

Snitzer, E.

Sousa, J. M.

O. G. Okhotnikov and J. M. Sousa, “Flared single-transverse-mode fibre amplifier,” Electron. Lett. 35, 1011-1013 (1999).
[CrossRef]

Taverner, D.

D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22, 378-380 (1997).
[CrossRef] [PubMed]

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393-394 (1997).
[CrossRef]

Thyagarajan, K.

A. K. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989).

Vienne, G. G.

Williams, K.

Wisk, P.

Yan, M. F.

Appl. Opt. (1)

Electron. Lett. (5)

O. G. Okhotnikov and J. M. Sousa, “Flared single-transverse-mode fibre amplifier,” Electron. Lett. 35, 1011-1013 (1999).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 470-472 (2004).
[CrossRef]

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393-394 (1997).
[CrossRef]

Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39, 1717-1719 (2003).
[CrossRef]

D. Cotter, “Transient stimulated Brillouin scattering in long single-mode fibre,” Electron. Lett. 18, 504-506 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Alegria, Y. Jeong, C. Codermard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium Co-doped fiber,” IEEE Photon. Technol. Lett. 16, 1825-1827 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (7)

Other (5)

P. C. Becker, N. A. Olsson, and J. B. Simpson, Erbium-Doped Fiber Amplifiers (Academic, 1999).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).

A. K. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure under consideration. (a) The first cladding mode is used for signal amplification. (b) The cladding mode with a mode number higher than the first is used for signal amplification.

Fig. 2
Fig. 2

Dependence between an effective mode-area ( A eff ) and the cladding mode number for the signal ( λ s = 1.531 μ m ) wavelength. The inset shows the power of the cladding mode concentrated in the fiber core.

Fig. 3
Fig. 3

Dependence of the SBS threshold on signal bandwidth, L = 14 m .

Fig. 4
Fig. 4

Dependence of the SRS threshold on the length of the fiber ( L ) for a signal ( λ s = 1.531 μ m ) wavelength.

Fig. 5
Fig. 5

Forward- (dashed curve) and backward- (solid curve) traveling ASE in a 14 m long Er 3 + -doped fiber pumped with P in p = 3 kW . The first cladding mode is used for amplification.

Fig. 6
Fig. 6

Dependence between the length of the LPG and the radius LPG in the fiber cladding for maximum cross transmission between the first and ninth cladding modes.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P th SBS = 21 A eff ( L eff g B ) ,
g B = Δ ν B Δ ν B + Δ ν p g B ( ν B ) ,
P th SRS = 16 A eff ( L eff g R ) ,
d R d z = i δ R ( z ) + i 1 2 κ 12 S ( z ) ,
d S d z = i δ S ( z ) + i 1 2 κ 12 * R ( z ) ,
t x = 1 ( 1 + 4 δ 2 κ 12 2 ) sin 2 ( z κ 12 2 4 + δ 2 ) .
( 1 + C ) E t cl = k B k E t co , k ,
β cl ( 1 C ) E t cl = k β co ( k ) B k E t co , k ,
B k = 2 n cl ( n cl + n co ( k ) ) I cl co , k ,
C = n cl n co ( k ) n cl + n co ( k ) ,

Metrics