Abstract

We propose a new type of two-dimensional photonic crystal power dividers based on ring resonators and directional couplers that can be applicable to photonic integrated circuits. The proposed power divider’s mechanism is analogous to that of conventional waveguide directional couplers, utilizing coupling between guided modes supported by line defect waveguides. Based on the calculated position, a photonic crystal power divider is designed and verified by finite-difference time-domain computation. With low-loss bends based on ring resonators, a total transmission up to 99% is achieved. Different output power levels are achieved by changing the coupling length. Also the power in each branch can easily be further divided.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2064 (1987).
    [Crossref] [PubMed]
  2. J. McNab Sharee, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927-2939 (2003).
    [Crossref] [PubMed]
  3. S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,” Opt. Lett. 27, 1001-1003 (2002).
    [Crossref]
  4. S. H. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162-165 (2001).
    [Crossref]
  5. M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902-3904 (2000).
    [Crossref]
  6. I. Park, H.-S. Lee, H.-J. Kim, K.-M. Moon, S.-G. Lee, B.-H. O, S.-G. Park, and E.-H. Lee, “Photonic crystal power-splitter based on directional coupling,” Opt. Express 12, 3599-3604 (2004).
    [Crossref] [PubMed]
  7. D. M. Pustai, A. S. Sharkawy, S. Shi, G. Jin, J. A. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlithogr., Microfabr., Microsyst. 2, 292-299 (2003).
    [Crossref]
  8. F. S. Chien, Y. Hsu, W. Hsieh, and S. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004).
    [Crossref] [PubMed]
  9. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970-1975 (2001).
    [Crossref]
  10. A. S. Sharkawy, S. Shi, D. W. Prather, and R. A. Soref, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002).
    [PubMed]
  11. M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279-1284 (2002).
    [PubMed]
  12. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

2004 (2)

2003 (2)

D. M. Pustai, A. S. Sharkawy, S. Shi, G. Jin, J. A. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlithogr., Microfabr., Microsyst. 2, 292-299 (2003).
[Crossref]

J. McNab Sharee, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927-2939 (2003).
[Crossref] [PubMed]

2002 (3)

2001 (2)

2000 (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902-3904 (2000).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2064 (1987).
[Crossref] [PubMed]

Bayindir, M.

M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279-1284 (2002).
[PubMed]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902-3904 (2000).
[Crossref]

Boscolo, S.

Cheng, S.

Chien, F. S.

Fan, S. H.

Haus, H. A.

Hsieh, W.

Hsu, Y.

Jin, G.

D. M. Pustai, A. S. Sharkawy, S. Shi, G. Jin, J. A. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlithogr., Microfabr., Microsyst. 2, 292-299 (2003).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Kim, H.-J.

Koshiba, M.

Krauss, T. F.

Lee, E.-H.

Lee, H.-S.

Lee, S.-G.

Manolatou, C.

McNab Sharee, J.

Midrio, M.

Moll, N.

Moon, K.-M.

Murakowski, J. A.

D. M. Pustai, A. S. Sharkawy, S. Shi, G. Jin, J. A. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlithogr., Microfabr., Microsyst. 2, 292-299 (2003).
[Crossref]

O, B.-H.

Ozbay, E.

M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279-1284 (2002).
[PubMed]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902-3904 (2000).
[Crossref]

Park, I.

Park, S.-G.

Prather, D. W.

D. M. Pustai, A. S. Sharkawy, S. Shi, G. Jin, J. A. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlithogr., Microfabr., Microsyst. 2, 292-299 (2003).
[Crossref]

A. S. Sharkawy, S. Shi, D. W. Prather, and R. A. Soref, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002).
[PubMed]

Pustai, D. M.

D. M. Pustai, A. S. Sharkawy, S. Shi, G. Jin, J. A. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlithogr., Microfabr., Microsyst. 2, 292-299 (2003).
[Crossref]

Sharkawy, A. S.

D. M. Pustai, A. S. Sharkawy, S. Shi, G. Jin, J. A. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlithogr., Microfabr., Microsyst. 2, 292-299 (2003).
[Crossref]

A. S. Sharkawy, S. Shi, D. W. Prather, and R. A. Soref, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002).
[PubMed]

Shi, S.

D. M. Pustai, A. S. Sharkawy, S. Shi, G. Jin, J. A. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlithogr., Microfabr., Microsyst. 2, 292-299 (2003).
[Crossref]

A. S. Sharkawy, S. Shi, D. W. Prather, and R. A. Soref, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002).
[PubMed]

Soref, R. A.

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902-3904 (2000).
[Crossref]

Vlasov, Y. A.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2064 (1987).
[Crossref] [PubMed]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Appl. Phys. Lett. (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902-3904 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Microlithogr., Microfabr., Microsyst. (1)

D. M. Pustai, A. S. Sharkawy, S. Shi, G. Jin, J. A. Murakowski, and D. W. Prather, “Characterization and analysis of photonic crystal coupled waveguides,” J. Microlithogr., Microfabr., Microsyst. 2, 292-299 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2064 (1987).
[Crossref] [PubMed]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) PC ring resonator. (b) Coupling two waveguides by ring resonator.

Fig. 2
Fig. 2

(a) Normalized transmission of the L-shaped bend. (b) Electric field intensity of the ring resonator resonant wavelength at 1594 nm .

Fig. 3
Fig. 3

Power divider based on PC ring resonators.

Fig. 4
Fig. 4

Normalized transmission of the power divider at a wavelength of 1594 nm . (b) Normalized transmission of the power divider at a wavelength of 1588 nm ; solid curves indicate a theoretical analysis in both (a) and (b).

Fig. 5
Fig. 5

Pattern of the power divider and its electric field intensity at (a) coupling length of 21 rods with normalized transmission at port B: 1% and port C: 99%; (b) coupling length of 16 rods with normalized transmission at port B: 32% and port C: 65%; (c) coupling length of 10 rods with normalized transmission at port B: 52% and port C: 46%; (d) coupling length of 8 rods with normalized transmission at port B: 90% and port C: 8%.

Fig. 6
Fig. 6

(a) Pattern of three-output power divider that contains two power dividers with 7 and 9 rods coupling length. (b) Electric field intensity of power divider.

Fig. 7
Fig. 7

(a) Pattern of three-output power divider that contains two power dividers with 9 and 16 rods coupling length. (b) Electric field intensity of power divider.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x , y ) = A ψ even ( x , y ) e j β even y + B ψ odd ( x , y ) e j β odd y ,
ψ ( x , L ) = A ψ even ( x , L ) e j β even L + B ψ odd ( x , L ) e j β odd L = [ A ψ even ( x , L ) B ψ odd ( x , L ) ] e j β even L .
L = π β even β odd .
I ( y ) = I 0 Sin 2 [ π y ( 2 L ) ] ,
T B ( l ) = Sin 2 [ π l ( 2 L ) ]
T C ( l ) = Cos 2 [ π l ( 2 L ) ] ,

Metrics