Abstract

We propose a new type of two-dimensional photonic crystal power dividers based on ring resonators and directional couplers that can be applicable to photonic integrated circuits. The proposed power divider’s mechanism is analogous to that of conventional waveguide directional couplers, utilizing coupling between guided modes supported by line defect waveguides. Based on the calculated position, a photonic crystal power divider is designed and verified by finite-difference time-domain computation. With low-loss bends based on ring resonators, a total transmission up to 99% is achieved. Different output power levels are achieved by changing the coupling length. Also the power in each branch can easily be further divided.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coupled-mode analysis of photonic crystal add-drop filters based on ring resonators

Mehrdad Djavid, Afshin Ghaffari, and Mohammad Sadegh Abrishamian
J. Opt. Soc. Am. B 25(11) 1829-1832 (2008)

Photonic crystal power-splitter based on directional coupling

Insu Park, Hyun-Shik Lee, Hyun-Jun Kim, Kyung-Mi Moon, Seung-Gol Lee, Beom-Hoan O, Se-Geun Park, and El-Hang Lee
Opt. Express 12(15) 3599-3604 (2004)

Design of efficient photonic crystal bend and power splitter using super defects

Faraz Monifi, Mehrdad Djavid, Afshin Ghaffari, and M. S. Abrishamian
J. Opt. Soc. Am. B 25(11) 1805-1810 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription