Abstract

The reactivity of prospective capping-layer extreme-ultraviolet (EUV) mirror materials with hydrocarbons is studied in the gas phase by use of mass spectroscopy of metal-oxide clusters. We report the results of chemistry studies for Sim, Tim, Hfm, and ZrmOn metal-oxide clusters in which the reaction products were ionized with little or no fragmentation by 26.5eV photons from a desktop-size 46.9nm Ne-like Ar laser. Hf and Zr oxides are found to be much less reactive than Si or Ti oxides in the presence of EUV light. The results are relevant to the design of EUV mirror capping layers that are resistant to carbon contamination.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hollenshead and L. Klebanoff, “Modeling extreme ultraviolet/H2O oxidation of ruthemium optic coatings,” J. Vac. Sci. Technol. B 24, 118-130 (2006).
    [CrossRef]
  2. B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
    [CrossRef]
  3. H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
    [CrossRef]
  4. K. Boller, R.-P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. 208, 273-279 (1983).
    [CrossRef]
  5. T. Engel, “The interaction of molecular and atomic oxygen with Si(100) and Si(111),” Surf. Sci. Rep. 18, 91-144 (1993).
    [CrossRef]
  6. G. Y. McDaniel, S. T. Fenstermaker, D. E. Walker, Jr., W. V. Lampert, S. M. Mukhopadhyay, and P. H. Holloway, “Electron-stimulated oxidation of silicon carbide,” Surf. Sci. 445, 159-166 (2000).
    [CrossRef]
  7. T. Miyake, S. Soeki, H. Kato, A. Namiki, H. Kamba, and T. Suzaki, “Molecular-beam study of sticking of oxygen on Si(100),” Phys. Rev. B 42, 11801-11807 (1990).
    [CrossRef]
  8. R. A. Roseberg and D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 291, 101-106 (1990).
    [CrossRef]
  9. T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
    [CrossRef]
  10. M. E. Malinowski, P. Grunow, C. Steinhaus, W. M. Clift, and L. E. Klebanoff, “Use of molecular oxygen to reduce EUV-induced carbon contamination of optics,” Proc. SPIE 4343, 347-356 (2001).
    [CrossRef]
  11. G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
    [CrossRef]
  12. C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
    [CrossRef]
  13. F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5eV soft x-ray laser,” J. Chem. Phys. 124, 224319 (2006).
    [CrossRef] [PubMed]
  14. S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m,” J. Chem. Phys. 125, 154316 (2006).
    [CrossRef] [PubMed]
  15. F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (SO2)n and (SO2)n(H2O)m,” J. Chem. Phys. 125, 154317 (2006).
    [CrossRef] [PubMed]
  16. F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: single photon ionization at 26.5eV,” J. Chem. Phys. 125, 164318 (2006).
    [CrossRef] [PubMed]
  17. S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of hydrogen bonded clusters with a soft x-ray laser: (HCOOH)x and (HCOOH)y(H2O)z,” J. Chem. Phys. 126, 244301 (2007).
    [CrossRef] [PubMed]
  18. F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
    [CrossRef] [PubMed]
  19. S. Heinbuch, M. Grisham, D. Martz, and J. J. Rocca, “Demonstration of a desk-top size high repetition rate soft x-ray laser,” Opt. Express 13, 4050-4055 (2005).
    [CrossRef] [PubMed]
  20. S. Heinbuch, M. Grisham, D. Martz, F. Dong, E. R. Bernstein, and J. J. Rocca, “Desk-top size high repetition rate 46.9nm capillary discharge laser as photoionization source for photochemistry applications,” Proc. SPIE 5919, 591907 (2005).
    [CrossRef]
  21. M. E. Geusic, M. D. Morse, S. C. O'Brien, and R. E. Smalley, “Surface reactions of metal clusters I: The fast flow cluster reactor,” Rev. Sci. Instrum. 56, 2123-2130 (1985).
    [CrossRef]
  22. Y. Matsuda and E. R. Bernstein, “On the titanium oxide neutral cluster distribution in the gas phase: detection through 118nm single-photon and 193nm multiphoton ionization,” J. Phys. Chem. A 109, 314-319 (2005).
    [CrossRef]
  23. T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, “Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography,” Appl. Surf. Sci. 253, 1691-1708 (2006).
    [CrossRef]
  24. Z. Luo, H. Cai, X. Ren, J. Liu, W. Hong, and P. Zhang, “Hydrophilicity of titanium oxide coatings with the addition of silica,” Mater. Sci. Eng., B 138, 151-156 (2007).
    [CrossRef]
  25. M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72- 80 (1994).
    [CrossRef]
  26. M. Ritala and M. Leskelä, “Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor,” Appl. Surf. Sci. 75, 333-340 (1994).
    [CrossRef]
  27. M. Atik and M. A. Aegerter, “Corrosion resistant sol-gel ZrO2 coatings on stainless steel,” J. Non-Cryst. Solids 147/148, 813-819 (1992).
    [CrossRef]

2008 (1)

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

2007 (3)

Z. Luo, H. Cai, X. Ren, J. Liu, W. Hong, and P. Zhang, “Hydrophilicity of titanium oxide coatings with the addition of silica,” Mater. Sci. Eng., B 138, 151-156 (2007).
[CrossRef]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of hydrogen bonded clusters with a soft x-ray laser: (HCOOH)x and (HCOOH)y(H2O)z,” J. Chem. Phys. 126, 244301 (2007).
[CrossRef] [PubMed]

G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
[CrossRef]

2006 (6)

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5eV soft x-ray laser,” J. Chem. Phys. 124, 224319 (2006).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m,” J. Chem. Phys. 125, 154316 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (SO2)n and (SO2)n(H2O)m,” J. Chem. Phys. 125, 154317 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: single photon ionization at 26.5eV,” J. Chem. Phys. 125, 164318 (2006).
[CrossRef] [PubMed]

J. Hollenshead and L. Klebanoff, “Modeling extreme ultraviolet/H2O oxidation of ruthemium optic coatings,” J. Vac. Sci. Technol. B 24, 118-130 (2006).
[CrossRef]

T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, “Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography,” Appl. Surf. Sci. 253, 1691-1708 (2006).
[CrossRef]

2005 (4)

Y. Matsuda and E. R. Bernstein, “On the titanium oxide neutral cluster distribution in the gas phase: detection through 118nm single-photon and 193nm multiphoton ionization,” J. Phys. Chem. A 109, 314-319 (2005).
[CrossRef]

S. Heinbuch, M. Grisham, D. Martz, and J. J. Rocca, “Demonstration of a desk-top size high repetition rate soft x-ray laser,” Opt. Express 13, 4050-4055 (2005).
[CrossRef] [PubMed]

S. Heinbuch, M. Grisham, D. Martz, F. Dong, E. R. Bernstein, and J. J. Rocca, “Desk-top size high repetition rate 46.9nm capillary discharge laser as photoionization source for photochemistry applications,” Proc. SPIE 5919, 591907 (2005).
[CrossRef]

C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
[CrossRef]

2004 (1)

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

2001 (2)

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

M. E. Malinowski, P. Grunow, C. Steinhaus, W. M. Clift, and L. E. Klebanoff, “Use of molecular oxygen to reduce EUV-induced carbon contamination of optics,” Proc. SPIE 4343, 347-356 (2001).
[CrossRef]

2000 (1)

G. Y. McDaniel, S. T. Fenstermaker, D. E. Walker, Jr., W. V. Lampert, S. M. Mukhopadhyay, and P. H. Holloway, “Electron-stimulated oxidation of silicon carbide,” Surf. Sci. 445, 159-166 (2000).
[CrossRef]

1994 (2)

M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72- 80 (1994).
[CrossRef]

M. Ritala and M. Leskelä, “Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor,” Appl. Surf. Sci. 75, 333-340 (1994).
[CrossRef]

1993 (1)

T. Engel, “The interaction of molecular and atomic oxygen with Si(100) and Si(111),” Surf. Sci. Rep. 18, 91-144 (1993).
[CrossRef]

1992 (1)

M. Atik and M. A. Aegerter, “Corrosion resistant sol-gel ZrO2 coatings on stainless steel,” J. Non-Cryst. Solids 147/148, 813-819 (1992).
[CrossRef]

1990 (2)

T. Miyake, S. Soeki, H. Kato, A. Namiki, H. Kamba, and T. Suzaki, “Molecular-beam study of sticking of oxygen on Si(100),” Phys. Rev. B 42, 11801-11807 (1990).
[CrossRef]

R. A. Roseberg and D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 291, 101-106 (1990).
[CrossRef]

1986 (1)

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

1985 (1)

M. E. Geusic, M. D. Morse, S. C. O'Brien, and R. E. Smalley, “Surface reactions of metal clusters I: The fast flow cluster reactor,” Rev. Sci. Instrum. 56, 2123-2130 (1985).
[CrossRef]

1983 (1)

K. Boller, R.-P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. 208, 273-279 (1983).
[CrossRef]

Aegerter, M. A.

M. Atik and M. A. Aegerter, “Corrosion resistant sol-gel ZrO2 coatings on stainless steel,” J. Non-Cryst. Solids 147/148, 813-819 (1992).
[CrossRef]

Atik, M.

M. Atik and M. A. Aegerter, “Corrosion resistant sol-gel ZrO2 coatings on stainless steel,” J. Non-Cryst. Solids 147/148, 813-819 (1992).
[CrossRef]

Bernstein, E. R.

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of hydrogen bonded clusters with a soft x-ray laser: (HCOOH)x and (HCOOH)y(H2O)z,” J. Chem. Phys. 126, 244301 (2007).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5eV soft x-ray laser,” J. Chem. Phys. 124, 224319 (2006).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m,” J. Chem. Phys. 125, 154316 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (SO2)n and (SO2)n(H2O)m,” J. Chem. Phys. 125, 154317 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: single photon ionization at 26.5eV,” J. Chem. Phys. 125, 164318 (2006).
[CrossRef] [PubMed]

S. Heinbuch, M. Grisham, D. Martz, F. Dong, E. R. Bernstein, and J. J. Rocca, “Desk-top size high repetition rate 46.9nm capillary discharge laser as photoionization source for photochemistry applications,” Proc. SPIE 5919, 591907 (2005).
[CrossRef]

Y. Matsuda and E. R. Bernstein, “On the titanium oxide neutral cluster distribution in the gas phase: detection through 118nm single-photon and 193nm multiphoton ionization,” J. Phys. Chem. A 109, 314-319 (2005).
[CrossRef]

Boller, K.

K. Boller, R.-P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. 208, 273-279 (1983).
[CrossRef]

Cai, H.

Z. Luo, H. Cai, X. Ren, J. Liu, W. Hong, and P. Zhang, “Hydrophilicity of titanium oxide coatings with the addition of silica,” Mater. Sci. Eng., B 138, 151-156 (2007).
[CrossRef]

Clift, W. M.

M. E. Malinowski, P. Grunow, C. Steinhaus, W. M. Clift, and L. E. Klebanoff, “Use of molecular oxygen to reduce EUV-induced carbon contamination of optics,” Proc. SPIE 4343, 347-356 (2001).
[CrossRef]

Davis, D. J.

G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
[CrossRef]

Deng, K.

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

Dong, F.

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of hydrogen bonded clusters with a soft x-ray laser: (HCOOH)x and (HCOOH)y(H2O)z,” J. Chem. Phys. 126, 244301 (2007).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: single photon ionization at 26.5eV,” J. Chem. Phys. 125, 164318 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (SO2)n and (SO2)n(H2O)m,” J. Chem. Phys. 125, 154317 (2006).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m,” J. Chem. Phys. 125, 154316 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5eV soft x-ray laser,” J. Chem. Phys. 124, 224319 (2006).
[CrossRef] [PubMed]

S. Heinbuch, M. Grisham, D. Martz, F. Dong, E. R. Bernstein, and J. J. Rocca, “Desk-top size high repetition rate 46.9nm capillary discharge laser as photoionization source for photochemistry applications,” Proc. SPIE 5919, 591907 (2005).
[CrossRef]

Edwards, N. V.

T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, “Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography,” Appl. Surf. Sci. 253, 1691-1708 (2006).
[CrossRef]

Engel, T.

T. Engel, “The interaction of molecular and atomic oxygen with Si(100) and Si(111),” Surf. Sci. Rep. 18, 91-144 (1993).
[CrossRef]

Faradzhev, N. S.

T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, “Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography,” Appl. Surf. Sci. 253, 1691-1708 (2006).
[CrossRef]

Fenstermaker, S. T.

G. Y. McDaniel, S. T. Fenstermaker, D. E. Walker, Jr., W. V. Lampert, S. M. Mukhopadhyay, and P. H. Holloway, “Electron-stimulated oxidation of silicon carbide,” Surf. Sci. 445, 159-166 (2000).
[CrossRef]

Friedbacher, G.

M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72- 80 (1994).
[CrossRef]

Fujimori, A.

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Geusic, M. E.

M. E. Geusic, M. D. Morse, S. C. O'Brien, and R. E. Smalley, “Surface reactions of metal clusters I: The fast flow cluster reactor,” Rev. Sci. Instrum. 56, 2123-2130 (1985).
[CrossRef]

Grant, R. B.

G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
[CrossRef]

Grantham, S.

C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
[CrossRef]

Grasserbauer, M.

M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72- 80 (1994).
[CrossRef]

Grisham, M.

S. Heinbuch, M. Grisham, D. Martz, and J. J. Rocca, “Demonstration of a desk-top size high repetition rate soft x-ray laser,” Opt. Express 13, 4050-4055 (2005).
[CrossRef] [PubMed]

S. Heinbuch, M. Grisham, D. Martz, F. Dong, E. R. Bernstein, and J. J. Rocca, “Desk-top size high repetition rate 46.9nm capillary discharge laser as photoionization source for photochemistry applications,” Proc. SPIE 5919, 591907 (2005).
[CrossRef]

Grunow, P.

M. E. Malinowski, P. Grunow, C. Steinhaus, W. M. Clift, and L. E. Klebanoff, “Use of molecular oxygen to reduce EUV-induced carbon contamination of optics,” Proc. SPIE 4343, 347-356 (2001).
[CrossRef]

Haelbich, R.-P.

K. Boller, R.-P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. 208, 273-279 (1983).
[CrossRef]

He, S.

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

Heinbuch, S.

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of hydrogen bonded clusters with a soft x-ray laser: (HCOOH)x and (HCOOH)y(H2O)z,” J. Chem. Phys. 126, 244301 (2007).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: single photon ionization at 26.5eV,” J. Chem. Phys. 125, 164318 (2006).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m,” J. Chem. Phys. 125, 154316 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (SO2)n and (SO2)n(H2O)m,” J. Chem. Phys. 125, 154317 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5eV soft x-ray laser,” J. Chem. Phys. 124, 224319 (2006).
[CrossRef] [PubMed]

S. Heinbuch, M. Grisham, D. Martz, F. Dong, E. R. Bernstein, and J. J. Rocca, “Desk-top size high repetition rate 46.9nm capillary discharge laser as photoionization source for photochemistry applications,” Proc. SPIE 5919, 591907 (2005).
[CrossRef]

S. Heinbuch, M. Grisham, D. Martz, and J. J. Rocca, “Demonstration of a desk-top size high repetition rate soft x-ray laser,” Opt. Express 13, 4050-4055 (2005).
[CrossRef] [PubMed]

Hogrefe, H.

K. Boller, R.-P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. 208, 273-279 (1983).
[CrossRef]

Hollenshead, J.

J. Hollenshead and L. Klebanoff, “Modeling extreme ultraviolet/H2O oxidation of ruthemium optic coatings,” J. Vac. Sci. Technol. B 24, 118-130 (2006).
[CrossRef]

Holloway, P. H.

G. Y. McDaniel, S. T. Fenstermaker, D. E. Walker, Jr., W. V. Lampert, S. M. Mukhopadhyay, and P. H. Holloway, “Electron-stimulated oxidation of silicon carbide,” Surf. Sci. 445, 159-166 (2000).
[CrossRef]

Hong, W.

Z. Luo, H. Cai, X. Ren, J. Liu, W. Hong, and P. Zhang, “Hydrophilicity of titanium oxide coatings with the addition of silica,” Mater. Sci. Eng., B 138, 151-156 (2007).
[CrossRef]

Jansen, R.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Jark, W.

K. Boller, R.-P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. 208, 273-279 (1983).
[CrossRef]

Kamba, H.

T. Miyake, S. Soeki, H. Kato, A. Namiki, H. Kamba, and T. Suzaki, “Molecular-beam study of sticking of oxygen on Si(100),” Phys. Rev. B 42, 11801-11807 (1990).
[CrossRef]

Kato, H.

T. Miyake, S. Soeki, H. Kato, A. Namiki, H. Kamba, and T. Suzaki, “Molecular-beam study of sticking of oxygen on Si(100),” Phys. Rev. B 42, 11801-11807 (1990).
[CrossRef]

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Keen, A.

G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
[CrossRef]

Klebanoff, L.

J. Hollenshead and L. Klebanoff, “Modeling extreme ultraviolet/H2O oxidation of ruthemium optic coatings,” J. Vac. Sci. Technol. B 24, 118-130 (2006).
[CrossRef]

Klebanoff, L. E.

M. E. Malinowski, P. Grunow, C. Steinhaus, W. M. Clift, and L. E. Klebanoff, “Use of molecular oxygen to reduce EUV-induced carbon contamination of optics,” Proc. SPIE 4343, 347-356 (2001).
[CrossRef]

Klein, R.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

Koide, T.

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Kruijs, R.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Kunz, C.

K. Boller, R.-P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. 208, 273-279 (1983).
[CrossRef]

Kurt, R.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

Kyriakou, G.

G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
[CrossRef]

Lambert, R. M.

G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
[CrossRef]

Lampert, W. V.

G. Y. McDaniel, S. T. Fenstermaker, D. E. Walker, Jr., W. V. Lampert, S. M. Mukhopadhyay, and P. H. Holloway, “Electron-stimulated oxidation of silicon carbide,” Surf. Sci. 445, 159-166 (2000).
[CrossRef]

Leskelä, M.

M. Ritala and M. Leskelä, “Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor,” Appl. Surf. Sci. 75, 333-340 (1994).
[CrossRef]

M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72- 80 (1994).
[CrossRef]

Liu, J.

Z. Luo, H. Cai, X. Ren, J. Liu, W. Hong, and P. Zhang, “Hydrophilicity of titanium oxide coatings with the addition of silica,” Mater. Sci. Eng., B 138, 151-156 (2007).
[CrossRef]

Loius, E.

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

Louis, E.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Luo, Z.

Z. Luo, H. Cai, X. Ren, J. Liu, W. Hong, and P. Zhang, “Hydrophilicity of titanium oxide coatings with the addition of silica,” Mater. Sci. Eng., B 138, 151-156 (2007).
[CrossRef]

Madey, T. E.

T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, “Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography,” Appl. Surf. Sci. 253, 1691-1708 (2006).
[CrossRef]

Malinowski, M. E.

M. E. Malinowski, P. Grunow, C. Steinhaus, W. M. Clift, and L. E. Klebanoff, “Use of molecular oxygen to reduce EUV-induced carbon contamination of optics,” Proc. SPIE 4343, 347-356 (2001).
[CrossRef]

Mancini, D. C.

R. A. Roseberg and D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 291, 101-106 (1990).
[CrossRef]

Martz, D.

S. Heinbuch, M. Grisham, D. Martz, and J. J. Rocca, “Demonstration of a desk-top size high repetition rate soft x-ray laser,” Opt. Express 13, 4050-4055 (2005).
[CrossRef] [PubMed]

S. Heinbuch, M. Grisham, D. Martz, F. Dong, E. R. Bernstein, and J. J. Rocca, “Desk-top size high repetition rate 46.9nm capillary discharge laser as photoionization source for photochemistry applications,” Proc. SPIE 5919, 591907 (2005).
[CrossRef]

Matsuda, Y.

Y. Matsuda and E. R. Bernstein, “On the titanium oxide neutral cluster distribution in the gas phase: detection through 118nm single-photon and 193nm multiphoton ionization,” J. Phys. Chem. A 109, 314-319 (2005).
[CrossRef]

McDaniel, G. Y.

G. Y. McDaniel, S. T. Fenstermaker, D. E. Walker, Jr., W. V. Lampert, S. M. Mukhopadhyay, and P. H. Holloway, “Electron-stimulated oxidation of silicon carbide,” Surf. Sci. 445, 159-166 (2000).
[CrossRef]

Meiling, H.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

Mertens, B.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

Mikuni, A.

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Miyahara, T.

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Miyake, T.

T. Miyake, S. Soeki, H. Kato, A. Namiki, H. Kamba, and T. Suzaki, “Molecular-beam study of sticking of oxygen on Si(100),” Phys. Rev. B 42, 11801-11807 (1990).
[CrossRef]

Moors, R.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Morse, M. D.

M. E. Geusic, M. D. Morse, S. C. O'Brien, and R. E. Smalley, “Surface reactions of metal clusters I: The fast flow cluster reactor,” Rev. Sci. Instrum. 56, 2123-2130 (1985).
[CrossRef]

Mukhopadhyay, S. M.

G. Y. McDaniel, S. T. Fenstermaker, D. E. Walker, Jr., W. V. Lampert, S. M. Mukhopadhyay, and P. H. Holloway, “Electron-stimulated oxidation of silicon carbide,” Surf. Sci. 445, 159-166 (2000).
[CrossRef]

Namiki, A.

T. Miyake, S. Soeki, H. Kato, A. Namiki, H. Kamba, and T. Suzaki, “Molecular-beam study of sticking of oxygen on Si(100),” Phys. Rev. B 42, 11801-11807 (1990).
[CrossRef]

Niinistö, L.

M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72- 80 (1994).
[CrossRef]

Niwano, M.

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

O'Brien, S. C.

M. E. Geusic, M. D. Morse, S. C. O'Brien, and R. E. Smalley, “Surface reactions of metal clusters I: The fast flow cluster reactor,” Rev. Sci. Instrum. 56, 2123-2130 (1985).
[CrossRef]

Plöger, S.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Prohaska, T.

M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72- 80 (1994).
[CrossRef]

Ren, X.

Z. Luo, H. Cai, X. Ren, J. Liu, W. Hong, and P. Zhang, “Hydrophilicity of titanium oxide coatings with the addition of silica,” Mater. Sci. Eng., B 138, 151-156 (2007).
[CrossRef]

Ritala, M.

M. Ritala and M. Leskelä, “Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor,” Appl. Surf. Sci. 75, 333-340 (1994).
[CrossRef]

M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72- 80 (1994).
[CrossRef]

Rocca, J. J.

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of hydrogen bonded clusters with a soft x-ray laser: (HCOOH)x and (HCOOH)y(H2O)z,” J. Chem. Phys. 126, 244301 (2007).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: single photon ionization at 26.5eV,” J. Chem. Phys. 125, 164318 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (SO2)n and (SO2)n(H2O)m,” J. Chem. Phys. 125, 154317 (2006).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m,” J. Chem. Phys. 125, 154316 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5eV soft x-ray laser,” J. Chem. Phys. 124, 224319 (2006).
[CrossRef] [PubMed]

S. Heinbuch, M. Grisham, D. Martz, F. Dong, E. R. Bernstein, and J. J. Rocca, “Desk-top size high repetition rate 46.9nm capillary discharge laser as photoionization source for photochemistry applications,” Proc. SPIE 5919, 591907 (2005).
[CrossRef]

S. Heinbuch, M. Grisham, D. Martz, and J. J. Rocca, “Demonstration of a desk-top size high repetition rate soft x-ray laser,” Opt. Express 13, 4050-4055 (2005).
[CrossRef] [PubMed]

Roseberg, R. A.

R. A. Roseberg and D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 291, 101-106 (1990).
[CrossRef]

Runstraat, A.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Sato, S.

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Shidara, T.

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Smalley, R. E.

M. E. Geusic, M. D. Morse, S. C. O'Brien, and R. E. Smalley, “Surface reactions of metal clusters I: The fast flow cluster reactor,” Rev. Sci. Instrum. 56, 2123-2130 (1985).
[CrossRef]

Soeki, S.

T. Miyake, S. Soeki, H. Kato, A. Namiki, H. Kamba, and T. Suzaki, “Molecular-beam study of sticking of oxygen on Si(100),” Phys. Rev. B 42, 11801-11807 (1990).
[CrossRef]

Spee, K.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Steinhaus, C.

M. E. Malinowski, P. Grunow, C. Steinhaus, W. M. Clift, and L. E. Klebanoff, “Use of molecular oxygen to reduce EUV-induced carbon contamination of optics,” Proc. SPIE 4343, 347-356 (2001).
[CrossRef]

Stietz, F.

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

Suzaki, T.

T. Miyake, S. Soeki, H. Kato, A. Namiki, H. Kamba, and T. Suzaki, “Molecular-beam study of sticking of oxygen on Si(100),” Phys. Rev. B 42, 11801-11807 (1990).
[CrossRef]

Tarrio, C.

C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
[CrossRef]

Tikhov, M. S.

G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
[CrossRef]

Trenkler, H.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Walker, D. E.

G. Y. McDaniel, S. T. Fenstermaker, D. E. Walker, Jr., W. V. Lampert, S. M. Mukhopadhyay, and P. H. Holloway, “Electron-stimulated oxidation of silicon carbide,” Surf. Sci. 445, 159-166 (2000).
[CrossRef]

Wang, Z.

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

Watson, D. J.

G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
[CrossRef]

Wedowski, M.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

Weiss, M.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Wolschrijn, B.

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Xie, Y.

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

Yakshin, A.

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

Yakshinskiy, B. V.

T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, “Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography,” Appl. Surf. Sci. 253, 1691-1708 (2006).
[CrossRef]

Yamada, A.

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Yanagihara, M.

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Zhang, P.

Z. Luo, H. Cai, X. Ren, J. Liu, W. Hong, and P. Zhang, “Hydrophilicity of titanium oxide coatings with the addition of silica,” Mater. Sci. Eng., B 138, 151-156 (2007).
[CrossRef]

Appl. Surf. Sci. (2)

T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, “Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography,” Appl. Surf. Sci. 253, 1691-1708 (2006).
[CrossRef]

M. Ritala and M. Leskelä, “Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor,” Appl. Surf. Sci. 75, 333-340 (1994).
[CrossRef]

J. Am. Chem. Soc. (1)

F. Dong, S. Heinbuch, Y. Xie, J. J. Rocca, Z. Wang, K. Deng, S. He, and E. R. Bernstein, “Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene,” J. Am. Chem. Soc. 130, 1932-1943 (2008).
[CrossRef] [PubMed]

J. Chem. Phys. (5)

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Dynamics and fragmentation of van der Waals clusters: (H2O)n, (CH3OH)n, and (NH3)n upon ionization by a 26.5eV soft x-ray laser,” J. Chem. Phys. 124, 224319 (2006).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m,” J. Chem. Phys. 125, 154316 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of van der Waals clusters with a soft x-ray laser: (SO2)n and (SO2)n(H2O)m,” J. Chem. Phys. 125, 154317 (2006).
[CrossRef] [PubMed]

F. Dong, S. Heinbuch, J. J. Rocca, and E. R. Bernstein, “Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: single photon ionization at 26.5eV,” J. Chem. Phys. 125, 164318 (2006).
[CrossRef] [PubMed]

S. Heinbuch, F. Dong, J. J. Rocca, and E. R. Bernstein, “Single photon ionization of hydrogen bonded clusters with a soft x-ray laser: (HCOOH)x and (HCOOH)y(H2O)z,” J. Chem. Phys. 126, 244301 (2007).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (1)

M. Atik and M. A. Aegerter, “Corrosion resistant sol-gel ZrO2 coatings on stainless steel,” J. Non-Cryst. Solids 147/148, 813-819 (1992).
[CrossRef]

J. Phys. Chem. A (1)

Y. Matsuda and E. R. Bernstein, “On the titanium oxide neutral cluster distribution in the gas phase: detection through 118nm single-photon and 193nm multiphoton ionization,” J. Phys. Chem. A 109, 314-319 (2005).
[CrossRef]

J. Phys. Chem. C (1)

G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): implications for next-generation EUV lithography,” J. Phys. Chem. C 111, 4491-4494 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. Hollenshead and L. Klebanoff, “Modeling extreme ultraviolet/H2O oxidation of ruthemium optic coatings,” J. Vac. Sci. Technol. B 24, 118-130 (2006).
[CrossRef]

Mater. Sci. Eng., B (1)

Z. Luo, H. Cai, X. Ren, J. Liu, W. Hong, and P. Zhang, “Hydrophilicity of titanium oxide coatings with the addition of silica,” Mater. Sci. Eng., B 138, 151-156 (2007).
[CrossRef]

Microelectron. Eng. (1)

B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski, H. Trenkler, B. Wolschrijn, R. Jansen, A. Runstraat, R. Moors, K. Spee, S. Plöger, and R. Kruijs, “Progress in EUV optics lifetime expectations,” Microelectron. Eng. 73-74, 16-22 (2004).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. (1)

K. Boller, R.-P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. 208, 273-279 (1983).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (2)

R. A. Roseberg and D. C. Mancini, “Deposition of carbon on gold using synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 291, 101-106 (1990).
[CrossRef]

T. Koide, S. Sato, T. Shidara, M. Niwano, M. Yanagihara, A. Yamada, A. Fujimori, A. Mikuni, H. Kato, and T. Miyahara, “Investigation of carbon contamination of synchrotron radiation mirrors,” Nucl. Instrum. Methods Phys. Res. A 246, 215-218 (1986).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

T. Miyake, S. Soeki, H. Kato, A. Namiki, H. Kamba, and T. Suzaki, “Molecular-beam study of sticking of oxygen on Si(100),” Phys. Rev. B 42, 11801-11807 (1990).
[CrossRef]

Proc. SPIE (3)

M. E. Malinowski, P. Grunow, C. Steinhaus, W. M. Clift, and L. E. Klebanoff, “Use of molecular oxygen to reduce EUV-induced carbon contamination of optics,” Proc. SPIE 4343, 347-356 (2001).
[CrossRef]

H. Meiling, B. Mertens, F. Stietz, M. Wedowski, R. Klein, R. Kurt, E. Loius, and A. Yakshin, “Prevention of MoSi multilayer reflection loss in EUVL tools,” Proc. SPIE 4506, 93-104 (2001).
[CrossRef]

S. Heinbuch, M. Grisham, D. Martz, F. Dong, E. R. Bernstein, and J. J. Rocca, “Desk-top size high repetition rate 46.9nm capillary discharge laser as photoionization source for photochemistry applications,” Proc. SPIE 5919, 591907 (2005).
[CrossRef]

Rev. Sci. Instrum. (2)

M. E. Geusic, M. D. Morse, S. C. O'Brien, and R. E. Smalley, “Surface reactions of metal clusters I: The fast flow cluster reactor,” Rev. Sci. Instrum. 56, 2123-2130 (1985).
[CrossRef]

C. Tarrio and S. Grantham, “Synchrotron beamline for extreme-ultraviolet multilayer mirror endurance testing,” Rev. Sci. Instrum. 76, 056101 (2005).
[CrossRef]

Surf. Sci. (1)

G. Y. McDaniel, S. T. Fenstermaker, D. E. Walker, Jr., W. V. Lampert, S. M. Mukhopadhyay, and P. H. Holloway, “Electron-stimulated oxidation of silicon carbide,” Surf. Sci. 445, 159-166 (2000).
[CrossRef]

Surf. Sci. Rep. (1)

T. Engel, “The interaction of molecular and atomic oxygen with Si(100) and Si(111),” Surf. Sci. Rep. 18, 91-144 (1993).
[CrossRef]

Thin Solid Films (1)

M. Ritala, M. Leskelä, L. Niinistö, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72- 80 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photograph of a Sc Si multilayer mirror that has been exposed to 46.9 nm radiation from a capillary discharge laser for 500 h . Carbon deposit has contaminated a large portion of the mirror, greatly reducing its reflectivity.

Fig. 2
Fig. 2

Schematic representation of the TOFMS experiment. M m O n metal-oxide clusters are generated by 532 nm laser ablation of a metal target and the clusters are passed through a reaction cell. The products, reactants, and buffer gases are ionized by a 46.9 nm laser and detected by TOFMS.

Fig. 3
Fig. 3

Left, multiphoton ionization fragment molecules. Right, 26.5 eV photons from compact Ne - like Ar EUV laser allows single-photon ionization of any cluster or molecule with little or no fragmentation.

Fig. 4
Fig. 4

Si m O n cluster distribution (a) with no reactant in the reaction cell, (b) with water in the reaction cell, (c) with acetylene ( C 2 H 2 ) in the reaction cell, (d) with ethylene ( C 2 H 4 ) in the reaction cell, and (e) with ethane ( C 2 H 6 ) in the reaction cell.

Fig. 5
Fig. 5

(Note that the scales on each section are different in order to better display the data.) Ti m O n cluster distribution (a) with no reactant in the reaction cell, (b) with water in the reaction cell, (c) with acetylene ( C 2 H 2 ) in the reaction cell, (d) with ethylene ( C 2 H 4 ) in the reaction cell, and (e) with ethane ( C 2 H 6 ) in the reaction cell.

Fig. 6
Fig. 6

Hf m O n cluster distribution (a) with no reactant in the reaction cell, (b) with water in the reaction cell, (c) with acetylene ( C 2 H 2 ) in the reaction cell, (d) with ethylene ( C 2 H 4 ) in the reaction cell, and (e) with ethane ( C 2 H 6 ) in the reaction cell.

Fig. 7
Fig. 7

Zr m O n cluster distribution (a) with no reactant in the reaction cell, (b) with water in the reaction cell, (c) with acetylene ( C 2 H 2 ) in the reaction cell, (d) with ethylene ( C 2 H 4 ) in the reaction cell, and (e) with ethane ( C 2 H 6 ) in the reaction cell.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Si m O n + H 2 O Si m O n H 2 O ,
Si m O n + H 2 O Si m O n H + OH ,
Si m O n + H 2 O Si m O n H 2 + O.
Si m O n + C 2 H 2 Si m O n C 2 H 2 .
Si m O n + C 2 H 4 Si m O n C 2 H 4 .
Hf m O n + H 2 O Hf m O n H 2 O.

Metrics