Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Characterization of a high-energy self-phase-stabilized near-infrared parametric source

Not Accessible

Your library or personal account may give you access

Abstract

We present a broadband self-phase-stabilized near-IR source based on difference frequency generation (DFG) of a filament broadened supercontinuum followed by a two-stage optical parametric amplifier. We demonstrate pulses with energy up to 1.2mJ and duration down to 17fs. We theoretically study the process of DFG and investigate the carrier-envelope phase (CEP) dependence on the driving pulse parameters. We find that robust CEP stability is possible even with fluctuations in the phase and intensity of the DFG seed pulse. These characteristics make this parametric source suitable as a driver for high-order harmonic generation and isolated attosecond pulse production.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification

C. Manzoni, C. Vozzi, E. Benedetti, G. Sansone, S. Stagira, O. Svelto, S. De Silvestri, M. Nisoli, and G. Cerullo
Opt. Lett. 31(7) 963-965 (2006)

High-energy, few-optical-cycle pulses at 1.5 µm with passive carrier-envelope phase stabilization

C. Vozzi, G. Cirmi, C. Manzoni, E. Benedetti, F. Calegari, G. Sansone, S. Stagira, O. Svelto, S. De Silvestri, M. Nisoli, and G. Cerullo
Opt. Express 14(21) 10109-10116 (2006)

Millijoule-level phase-stabilized few-optical-cycle infrared parametric source

C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira
Opt. Lett. 32(20) 2957-2959 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.