Abstract

This article analyzes a simple method for the enhancement of laser radiation coupled into deep layers of turbid samples. This is accomplished by using a multilayer dielectric bandpass filter that acts as a unidirectional mirror and reflects photons re-emerging from the sample back into it. The research establishes a theoretical framework, and a very basic feasibility study is performed. In this study, laser intensity, delivered through a 14mm slab of tissue, and a 3.9mm pharmaceutical tablet were enhanced by factors of 1.6 and 3.8, respectively. Potential applications include photothermal and photodynamic cancer therapies of subsurface tissue, deep optical spectroscopy and imaging of biological tissue and powders, as well as thermal and optical subsurface treatment of powder materials, colloids, and catalysts.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Int. Chem. Eng. 6, 827-832 (2006).
  2. X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115-2120 (2006).
    [CrossRef] [PubMed]
  3. L. H. V. Wang, R. E. Nordquist, and W. R. Chen, “Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple-beam delivery: A Monte Carlo study,” Am. J. Optom. Physiol. Opt. 36, 8286-8291 (1997).
  4. P. Matousek, “Raman signal enhancement in deep spectroscopy of turbid media,” Appl. Spectrosc. 61, 845-854 (2007).
    [CrossRef]
  5. P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. (Leipzig) 12, 593-601 (1931).
  6. B. Schrader and G. Bergmann, “Die Intensitat des Ramanspektrums polykristalliner Substanzen,” Fresenius' Z. Anal. Chem. 225, 230-247 (1967).
    [CrossRef]
  7. B. Schrader and D. S. Moore, “Laser based molecular spectroscopy for chemical analysis--Raman scattering process,” Pure Appl. Chem. 69, 1451-1468 (1997).
    [CrossRef]
  8. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227-292 (1997).
    [CrossRef]
  9. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Am. J. Optom. Physiol. Opt. 33, 6699-6710 (1994).
  10. N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Picosecond time-resolved Raman spectroscopy of solids: Capabilities and limitations for fluorescence rejection and the influence of diffuse reflectance,” Appl. Spectrosc. 55, 1701-1708 (2001).
    [CrossRef]
  11. N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Photon migration in Raman spectroscopy,” Appl. Spectrosc. 58, 591-597 (2004).
    [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2005).
  13. J. C. Henderson, Q. Su, and R. Grobe, “Mirror assisted imaging in one-dimensional turbid media using photon density waves,” Laser Phys. 14, 515-520 (2004).
  14. C. J. H. Brenan and I. W. Hunter, “Volumetric Raman microscopy through a turbid medium,” J. Raman Spectrosc. 27, 561-570 (1996).
    [CrossRef]
  15. P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12, 024008 (2007).
    [CrossRef]

2007 (2)

P. Matousek, “Raman signal enhancement in deep spectroscopy of turbid media,” Appl. Spectrosc. 61, 845-854 (2007).
[CrossRef]

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12, 024008 (2007).
[CrossRef]

2006 (2)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Int. Chem. Eng. 6, 827-832 (2006).

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

2004 (2)

N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Photon migration in Raman spectroscopy,” Appl. Spectrosc. 58, 591-597 (2004).
[CrossRef]

J. C. Henderson, Q. Su, and R. Grobe, “Mirror assisted imaging in one-dimensional turbid media using photon density waves,” Laser Phys. 14, 515-520 (2004).

2001 (1)

1997 (3)

B. Schrader and D. S. Moore, “Laser based molecular spectroscopy for chemical analysis--Raman scattering process,” Pure Appl. Chem. 69, 1451-1468 (1997).
[CrossRef]

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

L. H. V. Wang, R. E. Nordquist, and W. R. Chen, “Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple-beam delivery: A Monte Carlo study,” Am. J. Optom. Physiol. Opt. 36, 8286-8291 (1997).

1996 (1)

C. J. H. Brenan and I. W. Hunter, “Volumetric Raman microscopy through a turbid medium,” J. Raman Spectrosc. 27, 561-570 (1996).
[CrossRef]

1994 (1)

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Am. J. Optom. Physiol. Opt. 33, 6699-6710 (1994).

1967 (1)

B. Schrader and G. Bergmann, “Die Intensitat des Ramanspektrums polykristalliner Substanzen,” Fresenius' Z. Anal. Chem. 225, 230-247 (1967).
[CrossRef]

1931 (1)

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. (Leipzig) 12, 593-601 (1931).

Alfano, R. R.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

Bergmann, G.

B. Schrader and G. Bergmann, “Die Intensitat des Ramanspektrums polykristalliner Substanzen,” Fresenius' Z. Anal. Chem. 225, 230-247 (1967).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2005).

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Int. Chem. Eng. 6, 827-832 (2006).

Brenan, C. J. H.

C. J. H. Brenan and I. W. Hunter, “Volumetric Raman microscopy through a turbid medium,” J. Raman Spectrosc. 27, 561-570 (1996).
[CrossRef]

Chen, W. R.

L. H. V. Wang, R. E. Nordquist, and W. R. Chen, “Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple-beam delivery: A Monte Carlo study,” Am. J. Optom. Physiol. Opt. 36, 8286-8291 (1997).

Das, B. B.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

El-Sayed, I. H.

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

Everall, N.

Grobe, R.

J. C. Henderson, Q. Su, and R. Grobe, “Mirror assisted imaging in one-dimensional turbid media using photon density waves,” Laser Phys. 14, 515-520 (2004).

Hahn, T.

Halas, N. J.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Int. Chem. Eng. 6, 827-832 (2006).

Henderson, J. C.

J. C. Henderson, Q. Su, and R. Grobe, “Mirror assisted imaging in one-dimensional turbid media using photon density waves,” Laser Phys. 14, 515-520 (2004).

Huang, X. H.

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

Hunter, I. W.

C. J. H. Brenan and I. W. Hunter, “Volumetric Raman microscopy through a turbid medium,” J. Raman Spectrosc. 27, 561-570 (1996).
[CrossRef]

Kolzer, J.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Am. J. Optom. Physiol. Opt. 33, 6699-6710 (1994).

Kubelka, P.

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. (Leipzig) 12, 593-601 (1931).

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Int. Chem. Eng. 6, 827-832 (2006).

Liu, F.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

Matousek, P.

Mitic, G.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Am. J. Optom. Physiol. Opt. 33, 6699-6710 (1994).

Moore, D. S.

B. Schrader and D. S. Moore, “Laser based molecular spectroscopy for chemical analysis--Raman scattering process,” Pure Appl. Chem. 69, 1451-1468 (1997).
[CrossRef]

Munk, F.

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. (Leipzig) 12, 593-601 (1931).

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Int. Chem. Eng. 6, 827-832 (2006).

Nordquist, R. E.

L. H. V. Wang, R. E. Nordquist, and W. R. Chen, “Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple-beam delivery: A Monte Carlo study,” Am. J. Optom. Physiol. Opt. 36, 8286-8291 (1997).

Otto, J.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Am. J. Optom. Physiol. Opt. 33, 6699-6710 (1994).

Parker, A. W.

Plies, E.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Am. J. Optom. Physiol. Opt. 33, 6699-6710 (1994).

Qian, W.

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

Schrader, B.

B. Schrader and D. S. Moore, “Laser based molecular spectroscopy for chemical analysis--Raman scattering process,” Pure Appl. Chem. 69, 1451-1468 (1997).
[CrossRef]

B. Schrader and G. Bergmann, “Die Intensitat des Ramanspektrums polykristalliner Substanzen,” Fresenius' Z. Anal. Chem. 225, 230-247 (1967).
[CrossRef]

Solkner, G.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Am. J. Optom. Physiol. Opt. 33, 6699-6710 (1994).

Stone, N.

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12, 024008 (2007).
[CrossRef]

Su, Q.

J. C. Henderson, Q. Su, and R. Grobe, “Mirror assisted imaging in one-dimensional turbid media using photon density waves,” Laser Phys. 14, 515-520 (2004).

Towrie, M.

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Int. Chem. Eng. 6, 827-832 (2006).

Wang, L. H. V.

L. H. V. Wang, R. E. Nordquist, and W. R. Chen, “Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple-beam delivery: A Monte Carlo study,” Am. J. Optom. Physiol. Opt. 36, 8286-8291 (1997).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2005).

Zinth, W.

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Am. J. Optom. Physiol. Opt. 33, 6699-6710 (1994).

Am. J. Optom. Physiol. Opt. (2)

L. H. V. Wang, R. E. Nordquist, and W. R. Chen, “Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple-beam delivery: A Monte Carlo study,” Am. J. Optom. Physiol. Opt. 36, 8286-8291 (1997).

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Am. J. Optom. Physiol. Opt. 33, 6699-6710 (1994).

Appl. Spectrosc. (3)

Fresenius' Z. Anal. Chem. (1)

B. Schrader and G. Bergmann, “Die Intensitat des Ramanspektrums polykristalliner Substanzen,” Fresenius' Z. Anal. Chem. 225, 230-247 (1967).
[CrossRef]

Int. Chem. Eng. (1)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Int. Chem. Eng. 6, 827-832 (2006).

J. Am. Chem. Soc. (1)

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12, 024008 (2007).
[CrossRef]

J. Raman Spectrosc. (1)

C. J. H. Brenan and I. W. Hunter, “Volumetric Raman microscopy through a turbid medium,” J. Raman Spectrosc. 27, 561-570 (1996).
[CrossRef]

Laser Phys. (1)

J. C. Henderson, Q. Su, and R. Grobe, “Mirror assisted imaging in one-dimensional turbid media using photon density waves,” Laser Phys. 14, 515-520 (2004).

Pure Appl. Chem. (1)

B. Schrader and D. S. Moore, “Laser based molecular spectroscopy for chemical analysis--Raman scattering process,” Pure Appl. Chem. 69, 1451-1468 (1997).
[CrossRef]

Rep. Prog. Phys. (1)

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227-292 (1997).
[CrossRef]

Z. Tech. Phys. (Leipzig) (1)

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. (Leipzig) 12, 593-601 (1931).

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The fraction of the incident intensity transmitted and back-irradiated from the sample as a function of the product of the scattering coefficient r and medium thickness d. The results are derived from a one-dimensional scattering model [Eqs. (2a, 2b)]. The calculations illustrate the difficulty of transporting laser radiation through thicker turbid media.

Fig. 2
Fig. 2

(a) Principle of the enhancement of the coupling of laser radiation into a turbid medium using a dielectric bandpass filter. (b) Schematic illustration of the shift of the design wavelength with the angle of incidence for a bandpass filter used for the enhancement of the coupling of laser radiation into a turbid sample. (c) Experimental arrangement used in the demonstration of the enhancement effect.

Fig. 3
Fig. 3

(a) Calculated laser radiation, transmitted and backwards re-emitted, in photon counts. (b) The enhancement factor for the transmitted laser radiation obtained using a dielectric bandpass filter as a function of the thickness of biological tissue medium with and without an enhancing dielectric bandpass filter in the absence of absorption.

Fig. 4
Fig. 4

Plots of calculated (a) transmitted and backwards re-emitted laser radiation in photon counts. (b) The enhancement factor for the transmitted laser radiation achievable with a dielectric bandpass filter as a function of the thickness of a pharmaceutical tablet with and without enhancing dielectric bandpass filter in the absence of absorption.

Fig. 5
Fig. 5

Calculated dependence of the enhancement factor for the transmitted laser radiation achievable with a dielectric bandpass filter as a function of the absorption optical density for (a) 5, 10, and 20 mm thick chicken-breast-tissue media and (b) for 1, 2, and 4 mm thick pharmaceutical tablets.

Fig. 6
Fig. 6

Measured dependence of the enhancement factor on the filter-to-sample distance for (a) chicken breast tissue with thickness of 14 m m and (b) a pharmaceutical tablet (paracetamol tablet) of 3.9 mm thickness.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I P = I o k ( a + r ) sinh k d + k cosh k d ,
J P = I o r sinh k d ( a + r ) sinh k d + k cosh k d ,
I P I o 1 r d + 1 ,
J P I o 1 1 + 1 r d .

Metrics